Open Access
Review
Issue |
Ciência Téc. Vitiv.
Volume 39, Number 2, 2024
|
|
---|---|---|
Page(s) | 93 - 102 | |
DOI | https://doi.org/10.1051/ctv/ctv2024390293 | |
Published online | 26 November 2024 |
- Améglio T., Archer P., Cohen M., Valancogne C., Daudet F.-A., Dayaus S., Cruiziat P., 1999. Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant Soil, 207, 155–167. [CrossRef] [Google Scholar]
- Baeza P., Junquera P., Peiro E., Lissarrague J.R., Uriarte D., Vilanova M., 2019. Effects of Vine Water Stress on Yield Components, Vegetative Response and Must and Wine Composition. In: Advances in Grape and Wine Biotechnology, chapter 5. Morata, A. and Loira, I (eds.). London, United Kingdom. [Google Scholar]
- Baluja J., Diago M.P., Balda P., Zorer R., Meggio F., Morales F., Tardaguila J., 2012. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci., 30, 511–522. [CrossRef] [Google Scholar]
- Berli F.J., Bottini R., 2013. UV-B and abscisic acid effects on grape berry maturation and quality. J. Berry Res., 3, 1–14. [CrossRef] [Google Scholar]
- Bellvert J., Zarco-Tejeda P.J., Girona J., Ferreres E., 2014. Mapping crop water stress index in a “pinot-noir” vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agric, 15, 361–376. [CrossRef] [Google Scholar]
- Bramley R.G.V., Ouzman J., Thornton C., 2011. Selective harvesting is a feasible and profitable strategy even when grape and wine productions is geared towards large fermentation volumes. Aust. J. Grape Wine Res., 17, 298–305. [CrossRef] [Google Scholar]
- Broge N. H., Leblanc E., 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ., 76(2), 156–172. [CrossRef] [Google Scholar]
- Canas S., Cunha J., Eiras-Dias J.E., 2020. Advances in Viticulture, Enology and Vitivinicultural Economy: Ciência e Técnica Vitivinícola 2020. Ciência Téc. Vitiv., 35(2), 176–178. [CrossRef] [EDP Sciences] [Google Scholar]
- Chauvet M., Reynier A., 1984. Manual de Viticultura. Litexa. Chaves M.M., Santos T.P., Souza C.R., Ortuño M.F., Rodrigues M.L., Lopes C.M., Maroco J.P., Pereira J.S., 2007. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol., 150, 237–252. [CrossRef] [Google Scholar]
- Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M., 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105, 661–676. [CrossRef] [PubMed] [Google Scholar]
- Choné X., Van Leeuween C., Dubourdieu D., Gaudillére J-P., 2001. Stem water Potential is a Sensitive Indicator of Grapevine Water Status. Ann. Bot., 87, 477–483. [CrossRef] [Google Scholar]
- Cifre J., Bota J., Escalona J.M., Medrano H., Flexas J., 2005. Physiological tools for irrigation scheduling in grapevine (Vitis vinífera L.). An open gate to improve water-use efficiency? Agric. Ecosys. Environ., 106, 159–170. [CrossRef] [Google Scholar]
- Cole J., Pagay V., 2015. Usefulness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines (Vitis vinifera L.). Sci. Hortic., 191, 10–14. [CrossRef] [Google Scholar]
- Comstock J.P., 2002. Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J. Exp. Bot., 53, 195–200. [CrossRef] [Google Scholar]
- Costa J.M., Ortuño M.F., Lopes C.M., Chaves M.M., 2012. Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct. Plant Biol., 39 (3), 179–189. [CrossRef] [PubMed] [Google Scholar]
- Costa J.M., Grant O.M., Chaves M.M., 2013. Thermography to explore plant-environment interactions. J. Exp. Bot., 64 (13), 3937–3949. [CrossRef] [PubMed] [Google Scholar]
- Costa J.M., Vaz M., Escalona J., Egipto R., Lopes C., Medrano H., Chaves M.M., 2016a. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag., 164, 5–18. [CrossRef] [Google Scholar]
- Costa J.M., Egipto R., Garcia-Tejero I., Vaz M., Lopes C.M., Chaves M., 2016b. Monitorização da temperatura do coberto em duas castas de videira: uma ferramenta para comparer genótipos e optimizar a rega deficitária? In: Livro de atas do 10º Simpósio de Viticultura do Alentejo, volume II. 57–61.Évora. [Google Scholar]
- Damiano N., Arena C., Bonfante A., Caputo R., Erbaggio A., Cirillo C., De Micco V., 2022. How Leaf Vein and Stomata Traits Are Related with Photosynthetic Efficiency in Falanghina Grapevine in Different Pedoclimatic Conditions. Plants, 11 (11), 1507. [CrossRef] [PubMed] [Google Scholar]
- Davis W.J., Kudoyarova G., Hartung W., 2005. Longdistance ABA Signaling and Its Relations to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. J. Plant Growth Regul., 24, 285–295. [CrossRef] [Google Scholar]
- Dhami N., Cazzonelli C.I., 2020. Environmental impacts on carotenoid metabolism in leaves. Plant Growth Regul, 92, 455–477. [CrossRef] [Google Scholar]
- Diago M.P., Tardaguila J., Barrio I., Fernández-Novales J., 2022. Combination of multispectral imagery, environmental data and thermography for on-the-go monitoring of the grapevine water status in commercial vineyards. Eur. J. Agron., 140, 126586. [CrossRef] [Google Scholar]
- Dinis L.T., Bernardo S., Yang C., Fraga H., Malheiro A.C., Moutinho-Pereira, J., Santos, J.A., 2022. Mediterranean Viticulture in the Context of Climate Change. Ciência Téc. Vitiv., 37(2), 139–158. [CrossRef] [EDP Sciences] [Google Scholar]
- Dobrowski S.Z., Ustin S.L., Wolpert J.A., 2002. Remote estimation of vine canopy density in vertically shootpositioned vineyards: determining optimal vegetation indices. Aust. J. Grape Wine Res., 8, 117–125. [CrossRef] [Google Scholar]
- Doupis G., Chartzoulakis K., Beis A., Patakas A., 2011. Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Aust. J. Grape Wine R., 17, 36–42. [CrossRef] [Google Scholar]
- Espinoza C.Z., Khot L.R., Sankaran S., Jacoby P.W., 2017. High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines. Remote Sens., 9, 961. [CrossRef] [Google Scholar]
- Fernández-Novales J., Saiz-Rubio V., Barrio I., Rovira-Más F., Cuenca-Cuenca A., Santos Alves F., Valente J., Tardaguila J., Diago, M.P., 2021. Monitoring and Mapping Vineyard Water Status Using Non-Invasive Technologies by a Ground Robot. Remote Sens., 13, 2830. [CrossRef] [Google Scholar]
- Fernandes de Oliveira A., Nieddu G., 2016. Vine growth and physiological performance of two red grape cultivars under natural and reduced UV solar radiation. Aust. J. Grape Wine R., 22, 105–114. [CrossRef] [Google Scholar]
- Flexas J., Bota J., Cifre J., Escalona J.M., Galmés J., Gulías J., Lefi E-K., Martínez Cañellas S.F., Moreno M.T., Ribas-Carbó M., Riera D., Sampol B., Medrano H., 2004. Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. Ann. appl. Biol., 144, 273–283. [CrossRef] [Google Scholar]
- Flexas J., Galmés J., Gallé A., Gulías J., Pou A., Ribas-Carbo M., Medrano H., 2010. Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res., 16, 106–121. [CrossRef] [Google Scholar]
- Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos, J.A., 2012. An overview of climate change impacts on Europe viticulture. Food Energy Secur., 1 (2), 94–110. [CrossRef] [Google Scholar]
- Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos, J.A., 2013. Future scenarios for viticultural zonning Europe: ensemble projections and uncertainties. Int J Biometeorol, 57 (6), 909–925. [CrossRef] [PubMed] [Google Scholar]
- Fuentes S., De Bei R., Pech J., Tyerman S., 2012. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig Sci, 30, 523–536. [CrossRef] [Google Scholar]
- Giovos R., Tassopoulos D., Kalivas D., Lougkos N., Priovolou A., 2021. Remote Sensing Vegetation Indices in Viticulture: A Critical Review. Agriculture, 11, 457. [CrossRef] [Google Scholar]
- Gitelson A. A., 2004. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol., 161 (2), 165–173. [CrossRef] [Google Scholar]
- Govender M., Dye P.J., Weiersbye I.M., Witkowski E.T.F., Ahmed F., 2009. Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA, 35 (5), 741–752. [CrossRef] [Google Scholar]
- Grant O.M., Ochagavía H., Baluja J., Diago M.P., Tardáguila J., 2016. Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol., 91, 43–54. [CrossRef] [Google Scholar]
- Greer D.H., Weston C., 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant Biol., 37 (1), 206–214. [CrossRef] [Google Scholar]
- Gutiérrez S., Diago M.P., Fernández-Novales J., Tardaguila J., 2017. On-the-go thermal imaging for water status assessment in commercial vineyards. Precis. Agric., 8 (2), 520–524. [Google Scholar]
- Gutiérrez S., Diago M.P., Fernández-Novales J., Tardaguila J., 2018. Vineyard water status assessment using on-the-go thermal imaging and machine learning. Plos One, 13 (2): e0192037. [CrossRef] [PubMed] [Google Scholar]
- Hall A., Louis J., Lamb D., 2003. Characterizing and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Comput. and Geosci., 29, 813–822. [CrossRef] [Google Scholar]
- Hall A., Louis J., Lamb D.W., 2008. Low-resolution remotely sensed images of winegrape vineyards map spatial variability in planimetric canopy area instead of leaf area index. Aust. J. Grape Wine Res., 14, 9–17. [CrossRef] [Google Scholar]
- Hetherington A.M., Woodward F.I., 2003. The role of stomata in sensing and driving environmental change. Nature, 424, 901–908. [CrossRef] [PubMed] [Google Scholar]
- Huang Y., Lee M.A., Thomson S.J., Reddy K.N., 2016. Ground-based hyperspectral remote sensing for weed management in crop production. Int. J. Agric. & Biol. Eng., 9 (2), 98–109. [Google Scholar]
- Jiang Z., Huete A.R., Chen J., Chen Y., Li J., Yan G., Zhang X., 2006. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ., 101, 366–378. [CrossRef] [Google Scholar]
- Jiang F., Hartung W., 2008. Long-distance signaling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J. Exp. Bot., 59 (1), 37–43. [Google Scholar]
- Johnson L. F., Bosch D. F., Williams D. C., Lobitz B. M., 2001. Remote sensing of vineyard management zones: Implications for wine quality. Appl. Eng. Agric., 17 (4), 557–560. [CrossRef] [Google Scholar]
- Johnson L.F., 2003. Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard. Aust. J. Grape Wine Res., 9, 96–101. [CrossRef] [Google Scholar]
- Johnson L.F., Roczen D.E., Youkhana S.K., Nemani R.R., Bosch D.F., 2003. Mapping vineyard leaf area with multispectral satellite imagery. Comput. Electron. Agric., 38, 33–44. [CrossRef] [Google Scholar]
- Jones H.G., Stoll M., Santos T., Sousa C., Chaves M.M., Grant O., 2002. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J. Exp. Bot., 53 (378) 2249–2260. [CrossRef] [Google Scholar]
- Jones G.V., White M.A., Cooper O.R., Storchmann K., 2005. Climate Change and Global Wine Quality. Clim. Change, 73, 319–343. [CrossRef] [Google Scholar]
- Jones H.G. (2007). Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot., 58 (2), 119–130. [Google Scholar]
- Li F.-R., Peng S.-L., Chen B.-M., Hou Y.-P., 2010. A metaanalysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica, 36, 1–9. [CrossRef] [Google Scholar]
- Lovisolo C., Perrone I., Carra A., Ferrandino A., Flexas J., Medrano H., Shubert A., 2010. Drought-induced changes in development and function of grape (Vitis spp) organs and in their hydraulic and non-hydarulic interactions at the wholeplant level: a physiological and molecular update. Funct. Plant Biol., 37, 98–116. [CrossRef] [Google Scholar]
- MacMillen P., Teixeira G., Lopes C.M., Monteiro A., 2021. The role of grapevine leaf morphoanatomical traits in determining capacity for coping with abiotic stresses: a review. Ciência Téc. Vitiv., 36 (1), 75–88. [CrossRef] [EDP Sciences] [Google Scholar]
- Malheiro A.C., Santos J.A., Fraga H., Pinto L.G., 2010. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res., 43, 163–177. [CrossRef] [Google Scholar]
- Marques da Silva J.R., Terrón J.M., Sousa A., Mesquita P., Vieira F., Blanco J., Serrano J., Silva L.L., Coelho R., Alexandre C., Baptista F., 2015. Vinhos que Pensam – parte I/III – Gestão do vigor vegetativo da vinha a partir de sensores ativos multiespectrais próximos. Agrobótica, Junho/Julho/Agosto, 7–13. [Google Scholar]
- Martínez E.M., Rey B.J., Fandiño M., Cancela J.J. (2013). Comparison of two techniques for measuring leaf water potential in Vitis vinifera var. Albariño. Ciência Téc. Vitiv., 28, 29–41. [Google Scholar]
- Matthews M.A., Anderson M.M., Schultz H.R., 1987. Phenologic and growth responses to early and late season water deficits in Cabernet franc. Vitis, 26, 147–160. [Google Scholar]
- Medrano H., Escalona J.M., Bota J., Gulías J., Flexas J., 2002. Regulation of Photosynthesis os C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Ann. Bot., 89, 895–905. [CrossRef] [Google Scholar]
- Medrano H., Escalona J.M., Cifre J., Bota J., Flexas J., 2003. A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Funct. Plant Biol., 30, 607–619. [CrossRef] [PubMed] [Google Scholar]
- Mirás-Avalos J.M., Araujo E.S., 2021. Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. Water, 13, 746. [CrossRef] [Google Scholar]
- Möller M., Alchanatis V., Cohen Y., Meron M., Tsipris J., Noar A., Ostrovsky V., Sprintsin M., Cohen S., 2007. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot., 58 (4), 827–838. [Google Scholar]
- Montero F. J., Melia J., Brasa A., Segarra D., Cuesta A., Lanjeri S., 1999. Assessment of vine development according to available water resources by using remote sensing in La Mancha, Spain. Agric. Water Manag., 40, 363–375. [CrossRef] [Google Scholar]
- Ojeda H., 2007. Irrigation qualitative de précision de la vigne. Progrès Agric. Vitic., 127, 133 – 141. [Google Scholar]
- Pagay V., Kidman C.M., 2019. Evaluating Remotely-Sensed Grapevine (Vitis vinifera L.) Water Stress Responses Across a Viticultural Region. Agronomy, 9, 682. [CrossRef] [Google Scholar]
- Patakas A., Noitsakis B., Chouzouri A., 2005. Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agr. Ecosyst. Environ., 106, 253–259. [CrossRef] [Google Scholar]
- Pérez-Álvarez E.P., Intrigliolo Molina D.S., Vivaldi G.A., García-Esparza M.J., Lizama V., Álvarez I., 2021. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agric. Water Manag., 248, 106772. [CrossRef] [Google Scholar]
- Perrone I., Pagliarani C., Lovisolo C., Chitarra W., Roman F., Schubert A., 2012. Recovery from water stress affects grape leaf petiole transcriptome. Planta, 235 (6), 1383–1396. [CrossRef] [PubMed] [Google Scholar]
- Pollastrini M., Di Stefano V., Ferretti M., Agati G., Grifoni D., Zipoli G., Orlandini S., Bussotti F., 2011. Influence of different light intensity regimes on leaf features of Vitis vinifera L. in ultraviolet radiation filtered condition. Environ. Exp. Bot., 73, 108–115. [CrossRef] [Google Scholar]
- Pou A., Flexas J., Alsina M.M., Bota J., Carambula C., Herralde F., Galmés J., Lovisolo C., Jiménez M., Ribas-Carbó M., Rusjan D., Secchi F., Tomás M., Zsófi Z., Medrano H. , 2008. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the droughtadapted Vitis hybrid Richter – 110 (V. berlandieri x V. rupestris). Physiol. Plant., 134, 313–323. [CrossRef] [PubMed] [Google Scholar]
- Pou A., Medrano H., Tomàs M., Martorell S., Ribas-Carbó M., Flexas J., 2012. Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. Plant Soil, 359, 335–349. [CrossRef] [Google Scholar]
- Pou A., Diago M.P., Medrano H., Baluja J., Tardaguila J., 2014. Validation of thermal indices for water status identification in grapevine. Agric. Water Manag., 134, 60–72. [CrossRef] [Google Scholar]
- Prieto J.A., Lebon É., Ojeda H., 2010. Stomatal behavior of different grapevine cultivars in response to soil water status and air water pressure deficit. J. Int. Sci. Vigne Vin, 44 (1), 9–20. [Google Scholar]
- Reyniers M., Vrindts E., De Baerdemaeker J., 2006. Comparison of aerial-based system and an on the ground continuous measuring device to predict yield of winter wheat. Eur. J. Agron., 24, 87–94. [CrossRef] [Google Scholar]
- Rodrigues P., Pedroso V., Gouveia J.P., Martins S., Lopes C., Alves I., 2012. Influence of soil water content and atmospheric conditions of leaf water potential in cv. “Touriga Nacional” deep-rooted vineyards. Irrig Sci, 30, 407–417. [CrossRef] [Google Scholar]
- Romero P., Fernández-Fernández J.I., Martínez-Cutillas A., 2010. Physiological thresholds for efficient regulated deficitirrigation management in winegrapes grown under semiarid conditions. Am. J. Enol. Vitic., 61, 300–312. [CrossRef] [Google Scholar]
- Rouse J.W., Haas R.H., Schell J.A., Deering D.W., 1973. Monitoring the vernal advancement and retrogradiation (green wave effect) of natural vegetation. 112 pp. Texas A&M University, Remote Sensing Center, College Station. [Google Scholar]
- Salgado-Pirata M. (2018). Estudo do Stress Hídrico da Vinha – Castas Aragonês e Trincadeira. 154 pp. PhD Thesis in Ciências Agrárias e Ambientais. Instituto de Investigação e Formação Avançada da Universidade de Évora. Évora. [Google Scholar]
- Sancho-Galán P., Amores-Arrocha A., Palacios V., Jiménez-Contizano A., 2023. Winegrowing strategies for adapting to climate change in a warm climate zone. BIO Web Conf., 56, 02010. [CrossRef] [EDP Sciences] [Google Scholar]
- Santesteban L. G., Guillaume S., Royo J.B., Tisseyre B., 2013. Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precision Agric., 14, 2–17. [CrossRef] [Google Scholar]
- Schachtman D.P., Goodger J.Q.D., 2008. Chemical root to shoot signaling under drought. Trends Plant Sci., 13 (6), 281–287. [CrossRef] [Google Scholar]
- Schultz H.R., 2003. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ., 26, 1393–1405. [Google Scholar]
- Schultz H., Stoll M., 2010. Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust. J. Grape Wine Res., 16, 4–24. [CrossRef] [Google Scholar]
- Sepúlveda-Reyes D., Ingram B., Bardeen M., Zúñiga M., Ortega-Farías S., Poblete-Echeverría C., 2016. Selecting Canopy Zones and Thresholding Approaches to Assess Grapevine Water Status by Using Aerial and Ground-Based Thermal Imaging. Remote Sens., 8 (10), 822. [CrossRef] [Google Scholar]
- Shackel K.A., 2007. Water relations of woody perennial plant species. J. Int. Sci. Vigne Vin, 41 (3), 121–129. [Google Scholar]
- Simonneau T., Bebon E., Coupel-Ledru A., Marguerit E., Rossdeutsch L., Ollat N., 2017. Adapting plant material to face water stress in vineyards: which physiological targets for an optimal control of plant water status? OENO One, 51 (2), 167–179. [CrossRef] [Google Scholar]
- Serra I., Strever A., Myburgh P.A., Deloire A., 2014. Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res., 20, 1–14. [CrossRef] [Google Scholar]
- Serrano L., González-Flor C., Gorchs G., 2010. Assessing vineyard water status using the reflectance based Water Index. Agr. Ecosyst. Environ., 139 (4), 490–499. [CrossRef] [Google Scholar]
- Soar C.J., Speirs J., Maffei S.M., Penrose A.B., McCarthy M.G., Loveys B.R., 2006. Grape vine varieties Shiraz and Grenache differ in their stomatal responses to VPD: apparent links with ABA physiology and gene expression in leaf tissue. Aust. J. Grape Wine Res., 12, 2–12. [CrossRef] [Google Scholar]
- Soar C.J., Collins M.J., Sadras V.O., 2009. Irrigated Shiraz vine (Vitis vinifera) upregulate gas exchange and maintain berry growth in response to short spells of high maximum temperature in the field. Funct. Plant Biol., 36 (1), 801–814. [CrossRef] [PubMed] [Google Scholar]
- Stamatiadis S., Taskos D., Tsadila E., Chistofides C., Tsadilas C., Schepers J.S., 2010. Comparison of passive and active canopy sensors for the estimation of vine biomass production. Precision Agric., 11, 306–315. [CrossRef] [Google Scholar]
- Taylor J.A., Bates T.R., 2013. Temporal and spatial relationships of vine pruning mass in Concord grapes. Aust. J. Grape Wine Res., 19, 401–408. [Google Scholar]
- Terrón J.M., Blanco J., Moral F.J., Mancha L.A., Uriarte D., Marques da Silva J.R., 2015. Evaluation of vineyard growth under four irrigation regimes using vegetation and soil on the-go sensors. Soil, 1, 459–473. [CrossRef] [Google Scholar]
- Tomás M., Medrano H., Pou A., Escalona J.M., Matorell S., Ribas-Carbo A., Flexas J., 2012. Water-use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level. Aust. J. Grape Wine Res., 18, 164–172. [CrossRef] [Google Scholar]
- Tomás M., Medrano H., Escalona J.M., Martorell S., Pou A., Ribas-Carbo M., Flexas J., 2014. Variability of water use efficiency in grapevines. Environ. Exp. Bot., 103, 148–157. [CrossRef] [Google Scholar]
- Tosin R., Pôças I., Gonçalves I., Cunha M., 2020. Estimation of grapevine predawn leaf water potential based on hyperspectral reflectance data in Douro wine region. Vitis, 59, 9–18. [Google Scholar]
- Van Leeuwen C., Trégoat O., Choné X., Gaudillère J-P., Pernet D., 2008. Different environmental conditions, different results: the role of controlled environmental stress on grape quality potential ant the way to monitor it. 39–46. In: Proceedings of the Thirteenth Australian Wine Industry Technical Conference. Adelaide, South Australia. [Google Scholar]
- Van Leeuween C., Trégoat O., Choné X., Bois B., Pernet D., Gaudillère J-P., 2009. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Int. Sci. Vigne Vin, 43 (3), 121–134. [Google Scholar]
- Van Leeuwen C., Destrac-Irvine A., Dubernet M., Duchêne E., Gowdy M., Marguerit E., Pieri P., Parker A., Rességuir L., Ollat N., 2019. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9 (9), 514. [CrossRef] [Google Scholar]
- Van Zyl J.L., 1986. Canopy Temperature as a Water Stress Indicator in Vines. S. Afr. J. Enol. Vitic., 7 (2), 53–60. [Google Scholar]
- Vaz M., Coelho R., Rato A., Samara-Lima R., Silva L.L., Campostrini E., Mota J.B., 2016. Adaptive strategies of two Mediterranean grapevines varieties (Aragonez syn. Tempranillo and Trincadeira) face drought: physiological and structural responses. Theor Exp Plant Physiol, 28 (2), 205–220. [CrossRef] [Google Scholar]
- Williams L.E., Araujo F.J., 2002. Correlations among Predawn Leaf, Midday Leaf and Midday Stem Water Potential and their Correlations with other Measures of Soil and Plant Water Status in Vitis vinifera. J. Amer. Soc. Hort. Sci., 127 (3), 448–454. [CrossRef] [Google Scholar]
- Williams L.E., Trout T.J., 2005. Relationships among Vineand Soil-Based Measurements of Water Status in Thompson Seedless Vineyard in Response to High-Frequency Drip Irrigation. Am. J. Enol. Vitic., 54(6), 357–366. [CrossRef] [Google Scholar]
- Yu D.J., Kim S.J., Lee H.J., 2009. Stomatal and non-stomatal limitations to photosynthesis in field-grown grapevine cultivars. Biol. Plantarum, 53 (1), 133–137. [CrossRef] [Google Scholar]
- Zhang Y., Oren R., Kang S., 2012. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area. Tree Physiology, 32, 262–279. [CrossRef] [PubMed] [Google Scholar]
- Zsófi Z., Gál L., Szilágyi Z., Szücs E., Marschall M., Nagy Z., Baló B., 200.) Use of stomatal conductance and pre-dawn water potential to classify terroir for the grape variety Kékfrankos. Aust. J. Grape Wine Res., 15, 36–4 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.