Open Access
Issue |
Ciência Téc. Vitiv.
Volume 39, Number 2, 2024
|
|
---|---|---|
Page(s) | 84 - 92 | |
DOI | https://doi.org/10.1051/ctv/ctv2024390284 | |
Published online | 22 November 2024 |
- Asenstorfer R.E., Lee D.F., Jone. G.P., 2006. Influence of structure on the ionisation constants of anthocyanin and anthocyanin-like wine pigments. Anal. Chim. Acta, 563, 10–4. [CrossRef] [Google Scholar]
- Bakker J., Timberlake C.F., 1997. Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem., 45, 35–43. [CrossRef] [Google Scholar]
- Berké B., Chèze C., Deffieux G., Vercauteren J., 1999. Sulfur dioxide decolorization or resistance of anthocyanins: NMR structural elucidation of bisulfite-adducts. In Plant polyphenols 2., 779–790. Springer. [CrossRef] [Google Scholar]
- Bindon K.A., McCarthy M.G., Smith P.A., 2014. Development of wine colour and non-bleachable pigments during the fermentation and ageing of (Vitis vinifera L. cv.) cabernet sauvignon wines differing in anthocyanin and tannin concentration. LWT., 59, 923–32. [CrossRef] [Google Scholar]
- Boulton R.B., 1996. A method for the assessment of copigmentation in red wines. Paper presented at 47th annual meeting of the American Society for Enology and Viticulture, Reno, NV. [Google Scholar]
- Boulton R.B., 2001. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic., 52, 67–87. [CrossRef] [Google Scholar]
- Brouillard R., Delaporte,B., 1977. Chemistry of anthocyanin pigments. 2. kinetic and thermodynamic study of proton transfer, hydration, and tautomeric reactions of malvidin 3-glucoside. J. Am. Chem. Soc., 99, 8461–8. [CrossRef] [Google Scholar]
- Casassa F., Catania C.D., 2006. Pyranoanthocyanins, new pigments from red wines, scientific aspects and technological implications. Enol. 3, 1940. [Google Scholar]
- Castaneda-Ovando A., Pacheco-Hernández M.L., Páez-Hernández M.E., Rodríguez J.A., Galán-Vidal C.A., 2009. Chemical studies of anthocyanins: A review. Food Chem., 113, 859–71. [CrossRef] [Google Scholar]
- De Freitas V.A.P.., Mateus N., 2010. Updating wine pigments. In Recent advances in polyphenol research., eds. Celestino Santos-Buelga, M. Teresa Escribano-Bailón and Vicenzo Lattanzio. Vol. 2, 59–80. Oxford: Wiley Blackwell. [CrossRef] [Google Scholar]
- De Oliveira, J. B., Fialho, F. B., Laureano, O., de Castro, R., Pereira, G. E., Ricardo-da-Silva, J. M., 2024. Impact of aging on the physical-chemical and phenolic stability of tropical red wines from Brazil produced with grapes harvested in the summer season. J. Food Compost. Anal., 125, 105794. [CrossRef] [Google Scholar]
- Escribano-Bailón T., Álvarez-García M., Rivas-Gonzalo J.C., Heredia F.J., Santos-Buelga C., 2001. Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin 3-O-glucoside and (-)-catechin. J. Agric. Food Chem., 49, 1213–7. [CrossRef] [PubMed] [Google Scholar]
- Fulcrand H., Cameira dos Santos P.J., Sarni-Manchado P., Cheynier V., Favre-Bonvin J., 1996. Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perkin Trans., 1, 735–9. [CrossRef] [Google Scholar]
- Girschik L., Jones J.E., Kerslake F.L., Robertson M.,Dambergs R.G., Swarts N.D., 2017. Apple variety and maturity profiling of base ciders using UV spectroscopy. Food Chem., 228, 323–9. [CrossRef] [Google Scholar]
- Glories Y., 1984. La couleur des vins rouges. lre partie: Les équilibres des anthocyanes et des tanins. OENO One, 18, 195–217. [CrossRef] [Google Scholar]
- Harbertson J.F., Picciotto E.A., Adams D.O., 2003. Measurement of polymeric pigments in grape berry extract sand wines using a protein precipitation assay combined with bisulfite bleaching. Am. J. Enol. Vitic., 54, 301–6. [CrossRef] [Google Scholar]
- He F., Liang N.N., Mu L., Pan Q.H., Wang J., Reeves M.J., Duan C.Q., 2012. Anthocyanins and their variation in red wines II. anthocyanin derived pigments and their color evolution. Molecules, 17, 1483–519. [CrossRef] [PubMed] [Google Scholar]
- He J., Oliveira J., Silva A.MS, Mateus N., De Freitas V., 2010. Oxovitisins: A new class of neutral pyranoneanthocyanin derivatives in red wines. J. Agric. Food Chem., 58, 8814–9. [CrossRef] [PubMed] [Google Scholar]
- Heras-Roger J., Alonso-Alonso O., Gallo-Montesdeoca A., Díaz-Romero C., Darias-Martín J., 2016. Influence of copigmentation and phenolic composition on wine color. J. Food Sci. Technol., 53, 2540–7. [CrossRef] [PubMed] [Google Scholar]
- Heras-Roger J., Pomposo-Medina M., Díaz-Romero C., Darias-Martín J., 2014. Copigmentation, colour and antioxidant activity of single-cultivar red wines. Eur. food Res. Technol., 239, 13–9. [CrossRef] [Google Scholar]
- Huang K., Hu J., Li X., Sun J., Bai W., 2023. Advancements in the promotion of pyranoanthocyanins formation in wine: A review of current research. Food Chem., 137990. [Google Scholar]
- Jorge N., Teixeira A. R., Guimarães V., Lucas M. S., Peres J. A., 2021. Treatment of winery wastewater with a combination of adsorption and thermocatalytic processes. Processes, 10, 75. [CrossRef] [Google Scholar]
- Kopjar M., Piližota V., 2009. Copigmentation effect of phenolic compounds on red currant juice anthocyanins during storage. Croatian J. Food Sci. Technol. 1,16–20. [Google Scholar]
- Mesquita J. L., Escott C., Graça A., de Freitas V., Morata A., 2024. Analysis of pyranoanthocyanins, polymeric pigments and colour parameters in Port wines. OENO One, 58, 10. [CrossRef] [Google Scholar]
- Mollov P., Mihalev K., Shikov V., Yoncheva N., Karagyozov V., 2007. Colour stability improvement of strawberry beverage by fortification with polyphenolic copigments naturally occurring in rose petals. Innov. Food Sci. Emerg. Technol., 8, 318–21. [CrossRef] [Google Scholar]
- Morata A., Calderón F., González MC., Gómez-Cordovés MC., Suárez JA., 2007. Formation of the highly stable pyranoanthocyanins (vitisins A and B) in red wines by the addition of pyruvic acid and acetaldehyde. Food Chem., 100, 1144–52. [CrossRef] [Google Scholar]
- Pacheco-Palencia L.A., Talcott S.T., 2010. Chemical stability of açai fruit (euterpe oleracea mart.) anthocyanins as influenced by naturally occurring and externally added polyphenolic cofactors in model systems. Food Chem., 118, 17–25. [CrossRef] [Google Scholar]
- Pelonnier-Magimel E., Chira K., Teissèdre P. L., Jourdes M., Barbe J. C., 2023. Color Characterization of Bordeaux Red Wines Produced without Added Sulfites. Foods, 12, 2358. [CrossRef] [PubMed] [Google Scholar]
- Remy-Tanneau S., Le Guernevé C., Meudec E., Cheynier V., 2003. Characterization of a colorless anthocyanin-flavan-3-ol dimer containing both carbon-carbon and ether interflavanoid linkages by NMR and mass spectrometry. J. Agric. Food Chem., 51, 3592–7. [CrossRef] [PubMed] [Google Scholar]
- Rivas-Gonzalo JC., Gutierrez Y., Hebrero E., Santos-Buelga C., 1992. Comparisons of methods for the determination of anthocyanins in red wines. Am. J. Enol. Vitic., 43, 210–4. [CrossRef] [Google Scholar]
- Salas E., Le Guernevé C., Fulcrand H., Poncet-Legrand C., Cheynier V., 2004. Structure determination and colour properties of a new directly linked flavanol–anthocyanin dimer. Tetrahedron Lett., 45, 8725–9. [CrossRef] [Google Scholar]
- Somers T.C., Evans M.E., 1977. Spectral evaluation of young red wines: Anthocyanin equilibria, total phenolics, free and molecular SO2,“chemical age”. J. Sci. Food Agric., 28, 279–87. [CrossRef] [Google Scholar]
- Timberlake CF., Bridle P., 1968. Flavylium salts resistant to sulphur dioxide. Chem. Ind., 43, 1489. [Google Scholar]
- Versari A., Boulton R.B., Parpinello G.P., 2008. A comparison of analytical methods for measuring the color components of red wines. Food Chem., 106, 397–402. [CrossRef] [Google Scholar]
- Versari A., Boulton R.B., Parpinello G.P., 2007. Analysis of SO2-resistant polymeric pigments in red wines by highperformance liquid chromatography. Am. J. Enol. Vitic., 58, 523–5. [CrossRef] [Google Scholar]
- Wang J., Zhao, Y., Sun, B., Yang, Y., Wang, S., Feng, Z., Li, J., 2023. The structure of anthocyanins and the copigmentation by common micromolecular copigments: a review. Food Res. Int., 113837. [Google Scholar]
- Wrolstad R.E., Durst R.W., Lee J., 2005. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol.,16, 423–428. [CrossRef] [Google Scholar]
- Zhang X., Jeffery K., D. W., Li, D. M., Lan, Y. B., Zhao, X., Duan, C. Q., 2022. Red wine coloration: A review of pigmented molecules, reactions, and applications. Compr. Rev. Food Sci. Food Saf., 21, 3834–3866. [CrossRef] [Google Scholar]
- Zhao M., Harrison, R., Frost, A., Tian, B., 2023. Colour properties and tannin concentrations of polymeric phenolic materials extracted from Pinot Noir wines of a single NZ producer. Int. J. Food Sci. Technol., 58, 4761–4769. [CrossRef] [Google Scholar]
- Zhao X., Ding, B. W., Qin, J. W., He, F., Duan, C. Q., 2020. Intermolecular copigmentation between five common 3-Omonoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chem., 326, 126960. [CrossRef] [Google Scholar]
- Zhao J., Guo, M., Wang, R., Li, L., Sun, B., 2023. Evaluation of color and stability of ethyl-linked anthocyanin-flavanol pigments in model wine solutions using combined chemical analysis and 3D molecular simulations. Ciência Tec. Vitiv., 38, 67–81. [CrossRef] [EDP Sciences] [Google Scholar]
- Zhao J., Guo, M., Martins, P., Ramos, J., Li, L., Sun, B., 2024. Effect of fermentation technologies on the structural composition of polymeric polyphenols in aged red wines. J. Food Compost. Anal., 125, 105782. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.