Open Access
Ciência Téc. Vitiv.
Volume 38, Number 1, 2023
Page(s) 35 - 42
Published online 07 March 2023
  • Abdelhakam, S., Rabei, S.H., Nada, R.M., Abogadallah, G. M., 2021. The complementary role of root and leaf PIP1 and PIP2 aquaporins drives the anisohydric behavior in Helianthus annuus L. Environ. Exp. Bot., 182, 104314. [CrossRef] [Google Scholar]
  • Abdi, S., Abbaspur, N., Avestan, S., Barker, A., 2016. Sana physiological responses of two grapevine (Vitis vinifera L.) cultivars to cycoceltm treatment during droughtx. J. Hort. Sci. Biotechnol., 91, 211–219. [CrossRef] [Google Scholar]
  • Ashraf, M.F.M.R., Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59, 206–216. [CrossRef] [Google Scholar]
  • Brás, T. A., Seixas, J., Carvalhais, N., & Jägermeyr, J., 2021. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett., 16 (6), 065012. [CrossRef] [Google Scholar]
  • Capone, R., El-Moujabber, M., Cardone, G., Adinolfi, F., Di Pasquale, J., El Chami, D., 2014. Trade and logistics: The case of the wine industry. In: MediTERRA, 245–262. [Google Scholar]
  • Carillo, P. Gibon, Y., 2011. Protocol: Extraction and determination of proline. Prometheus Wiki. Available at: (accessed on 18.04.2019). [Google Scholar]
  • Chaves, M.M., 1991. Effects of water deficits on carbon assimilation. J. Exp. Bot., 42, 1–16. [CrossRef] [Google Scholar]
  • Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., Rodrigues, M.L., Lopes, C. M., 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of botany, 105, 661–676. [CrossRef] [PubMed] [Google Scholar]
  • Dayer, S., Scharwies, J.D., Ramesh, S.A., Sullivan, W., Doerflinger, F.C., Pagay, V., Tyerman, S.D., 2020. Comparing hydraulics between two grapevine cultivars reveals differences in stomatal regulation under water stress and exogenous ABA applications. Front. Plant Sci., 11, 705. [CrossRef] [Google Scholar]
  • De Mendiburu, F., 2016. Agricolae: Statistical procedures for agricultural research. R v. 1.2-4. R Core Team, Vienna, Austria. [Google Scholar]
  • Dhanda, S.S., Sethi, G.S., 1998. Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica, 104, 39–47. [CrossRef] [Google Scholar]
  • Dinis, L. T., Bernardo, S., Yang, C., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Santos, J. A., 2022. Mediterranean viticulture in the context of climate change. Ciência Téc. Vitiv., 37, 139–158. [CrossRef] [EDP Sciences] [Google Scholar]
  • Galmés, J., Pou, A., Alsina, M.M., Tomàs, M., Medrano, H., Flexas, J., 2000. Aquaporin expression in response to different water stress intensities and recovery in Richter110 (Vitis spp.): Relationship with ecophysiological status. Planta, 226, 671–681. [Google Scholar]
  • Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U., Castellarin, S. D., 2020. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of experimental botany, 71, 4658–4676. [CrossRef] [PubMed] [Google Scholar]
  • Gautam, A., Pandey, A.K., 2021. Aquaporins responses under challenging environmental conditions and abiotic stress tolerance in plants. Bot. Rev., 87, 467–495. [CrossRef] [Google Scholar]
  • Hayes, M.A., Davies, C., Dry, I.B., 2007. Isolation, functional characterization and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J. Exp. Bot., 58, 1985–1997. [CrossRef] [PubMed] [Google Scholar]
  • Heinen, R.B., Ye, Q., Chaumont, F., 2009. Role of aquaporins in leaf physiology. J. Exp. Bot., 60, 2971–2985. [CrossRef] [PubMed] [Google Scholar]
  • Joshi, R., Wani, S.H., Singh, B., Bohra, A., Dar, Z.A., Lone, A.A., Pareek, A., Singla-Pareek, S.L., 2016. Transcription factors and plants response to drought stress: current understanding and future directions. Front. Plant Sci., 7, 1029. [CrossRef] [Google Scholar]
  • Kaldenhoff, R., Fischer, M., 2006. Functional aquaporin diversity in plants. Biochim. Biophys. Act. (BBA)-Biomembr., 1758, 1134–1141. [CrossRef] [Google Scholar]
  • Kaldenhoff, R., Rıbas‐Carbo, Mıquel., Sans, J.F., Lovisolo, C., Heckwolf, M., Uehlein, N., 2008. Aquaporins and plant water balance. Plant Cell Environ., 31, 658–666. [CrossRef] [PubMed] [Google Scholar]
  • Kamangar, A., Haddad, R., 2016. Effect of water stress and sodium silicate on antioxidative response in different grapevine (Vitis vinifera L.) cultivars. J. Agric. Sci. Technol., 18, 1859–1870. [Google Scholar]
  • Kapilan, R., Vaziri, M., Zwiazek, J.J., 2018. Regulation of aquaporins in plants under stress. Biol. Res. 51, 1–11. [CrossRef] [Google Scholar]
  • Keller, M., Deyermond, L.S., Bondada, B.R., 2015. Plant hydraulic conductance adapts to shoot number but limits shoot vigour in grapevines. Funct. Plant Biol., 42, 366–375. [CrossRef] [PubMed] [Google Scholar]
  • Król, A., Weidner, S., 2017. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress. J. Plant Physiol., 211, 114–126. [CrossRef] [Google Scholar]
  • Leitão, L., Prista, C., Moura, T.F., Loureiro-Dias, M.C., Soveral, G., 2012. Grapevine aquaporins: Gating of a tonoplast intrinsic protein (TIP2; 1) by cytosolic pH. PLoS One, 7, e33219. [CrossRef] [PubMed] [Google Scholar]
  • Li, G., Santoni, V., Maurel, C., 2014. Plant aquaporins: Roles in plant physiology. Biochim. Biophys. Act. (BBA)-Gen. Subj., 1840. 1574–1582. [CrossRef] [Google Scholar]
  • Lovisolo, C., Schubert, A., 2006. Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: Evidence from a whole-plant approach. New Phytol., 172, 469–478. [CrossRef] [PubMed] [Google Scholar]
  • Mandlik, R., Singla, P., Kumawat, S., Khatri, P., Ansari, W., Singh, A., Sharma, Y., Singh, A., Solanke, A., Nadaf, A., Sonah, H., Deshmukh, R., 2022. Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan). Environ. Pollut., 294, 118606. [CrossRef] [Google Scholar]
  • Merlaen, B., De Keyser, E., Ding, L., Leroux, O., Chaumont, F., Van Labeke, M.C., 2019. Physiological responses and aquaporin expression upon drought and osmotic stress in a conservative vs prodigal Fragaria x ananassa cultivar. Plant Physiol. Biochem., 145, 95–106. [CrossRef] [Google Scholar]
  • Nguyen, M.X., Moon, S., Jung, K.H., 2013. Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta, 238, 669–681. [CrossRef] [PubMed] [Google Scholar]
  • Ozden, M., Demirel, U., Kahraman, A., 2009. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scient Horticult., 119, 163–168. [CrossRef] [Google Scholar]
  • Pou, A., Medrano, H., Flexas, J., Tyerman, S.D., 2013. A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. Plant Cell Environ., 36, 828–843. [CrossRef] [Google Scholar]
  • Prinsi, B., Simeoni, F., Galbiati, M., Meggio, F., Tonelli, C., Scienza, A., Espen, L., 2021. Grapevine rootstocks differently affect physiological and molecular responses of the scion under water deficit condition. Agronomy, 11, 289. [CrossRef] [Google Scholar]
  • Richards, D., 1983. The grape root system. Hort. Res., 5, 127–168. [Google Scholar]
  • Sabir, F., Leandro, M.J., Martins, A.P., Loureiro-Dias, M.C., Moura, T.F., Soveral, G., Prista, C., 2014. Exploring three Pips and Three Tips of grapevine for transport of water and typical substrates through heterologous expression in Aqy-null yeast. PLoS One, 9, e102087. [CrossRef] [PubMed] [Google Scholar]
  • Şahin, Ö., 2009. Evaluation of salt and boron tolerance of sultana seedless grapevines (Vitis vinifera L.) grafted on different grapevine rootstocks with physiological parameters and antioxidant enzymes symptomatic for oxidative stress. 152 p. MSc Thesis, University of Ankara. [Google Scholar]
  • Sakr, S., Alves, G., Morillon, R., Maurel, K., Decourteix, M., Guilliot, A., Fleurat-Lessard, P., Julien, J.L., Chrispeels, M.J., 2003. Plasma membrane aquaporins are involved in winter embolism recovery in walnut trees. Plant Physiol., 133, 630–641. [CrossRef] [PubMed] [Google Scholar]
  • Schley, T.R., Franco, D.M., Junior, J.P.A., de Godoy Maia, I., Habermann, G., de Almeida, L.F.R., 2022. TIP1; 1 expression could modulate the recovery of stomatal opening during rehydration in Sorghum bicolor. Environ. Exp. Bot., 200, 104908. [CrossRef] [Google Scholar]
  • Secchi, F., Lovisolo, C., Schubert, A., 2007. Expression of Oepip2.1 aquaporin gene and water relations of Olea europaea twigs during drought stress and recovery. Ann. Appl. Biol. 150, 163–167. [CrossRef] [Google Scholar]
  • Serra, I., Strever, A., Myburgh, P.A., Deloire, A., 2014. Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res., 20, 1–14. [CrossRef] [Google Scholar]
  • Serraj, R., Sinclair, T.R., 2002. Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ., 25, 333–341. [CrossRef] [Google Scholar]
  • Shao, H.B., Song, W.Y., Chu, L.Y., 2008. Advances of calcium signals involved in plant anti-drought. Compt. Rend. Biol., 331, 587–596. [CrossRef] [Google Scholar]
  • Shelden, M.C., Vandeleur, R., Kaiser, B.N., Tyerman, S.D., 2017. A comparison of petiole hydraulics and aquaporin expression in an anisohydric and isohydric cultivar of grapevine in response to water-stress induced cavitation. Front. Plant Sci., 8, 1893. [CrossRef] [Google Scholar]
  • Soar, C.J., Dry, P.R., Loveys, B.R., 2006. Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: Mediation of rootstock effects via xylem sap ABA. Aust. J. Grape Wine Res., 12, 82–96. [CrossRef] [Google Scholar]
  • Šurbanovski, N. Grant, O.M., 2014. The emerging role of aquaporins in pant tolerance of abiotic stress. In: Emerging technologies and management of crop stress tolerance. 431–447. Academic Press, San Diego. [CrossRef] [Google Scholar]
  • Tramontini, S., Vitali, M., Centioni, L., Schubert, A., Lovisolo, C., 2013. Rootstock control of scion response to water stress in grapevine. Environ. Exp. Bot., 93, 20–26. [CrossRef] [Google Scholar]
  • Tsegay, D., Amsalem, D., Almeida, M., Crandles, M., 2014. Responses of grapevine rootstocks to drought stress. Int. J. Plant Physiol. Biochem., 6, 1–6. [CrossRef] [Google Scholar]
  • Turgay, G., 2015. Asma' da (Vitis vinifera L.) aquaporin genlerinin biyoinformatik analizi ve farklı dokularda ifade profillerinin belirlenmesi. 142 p. PhD Thesis, University of Ege. [Google Scholar]
  • Vandeleur, R.K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., Tyerman, S.D., 2008. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol., 149, 445–460. [Google Scholar]
  • Zarrouk, O., Francisco, R., Pinto-Marijuan, M., Brossa, R., Santos, R.R., Pinheiro, C., ... Chaves, M.M., 2012. Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine. Agr. Water. Manage., 114, 18–29. [CrossRef] [Google Scholar]
  • Zarrouk, O., Garcia-Tejero, I., Pinto, C., Genebra, T., Sabir, F., Prista, C., David, T.S., Dias, M.C., Chave, M. M. (2016). Aquaporins isoforms in cv. Touriga Nacional grapevine under water stress and recovery—regulation of expression in leaves and roots. Agr. Water. Manage., 164, 167–175. [CrossRef] [Google Scholar]
  • Zhang, L., Marguerit, E., Rossdeutsch, L., Ollat, N., Gambetta, G.A., 2016. The influence of grapevine rootstocks on scion growth and drought resistance. Theor. Exp. Plant Physiol., 28, 143–157. [CrossRef] [Google Scholar]
  • Zombardo, A., Mica, E., Puccioni, S., Perria, R., Valentini, P., Mattii, G.B., Cattivelli, L., Storchi, P., 2020. Berry quality of grapevine under water stress as affected by rootstock–Scion interactions through gene expression regulation. Agronomy, 10, 680. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.