Open Access
Review
Issue
Ciência Téc. Vitiv.
Volume 38, Number 1, 2023
Page(s) 43 - 59
DOI https://doi.org/10.1051/ctv/ctv20233801043
Published online 13 March 2023
  • Ahmed E. A., Shalaby O. Y., Dwidar E. F., Mokbel S. A., El-Attar A. K., 2016. Ultrastructural changes in tomato plant induced by phytoplasma infection and attempts for its elimination using tissue culture techniques. Egypt. J. Virol., 13, 34–51. [CrossRef] [Google Scholar]
  • Alves N. M., Mano J. F. 2008. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol., 43, 401–414. [CrossRef] [Google Scholar]
  • Aranaz I., Alcántara A. R., Civera M. C., Arias C., Elorza B., Caballero A. H., Acosta N., 2021. Chitosan: an overview of its properties and applications. Polymers, 13, 3256. [CrossRef] [PubMed] [Google Scholar]
  • Aziz A., Trotel-Aziz P., Dhuicq L., Jeandet P., Couderchet M., Vernet G., 2006. Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96, 1188–1194. [CrossRef] [PubMed] [Google Scholar]
  • Barbosa M. A. G., Laranjeira D., Coelho R. S. B., 2008. Physiological cost of induced resistance in cotton plants at different nitrogen levels. Summa Phytopathologica, 34, 338–342. [CrossRef] [Google Scholar]
  • Barka E. A., Eullaffroy P., Clément C., Vernet G., 2004. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Rep., 22, 608–614. [CrossRef] [PubMed] [Google Scholar]
  • Bell S. J., Henschke P. A., 2005. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res., 11, 242–295. [CrossRef] [Google Scholar]
  • Bertsch C., Ramírez-Suero M., Magnin-Robert M., Larignon P., Chong J., Abou-Mansour E., Spagnolo A., Clément C., Fontaine F., 2013. Grapevine trunk diseases: complex and poorly understood. Phytopathol. Mediterr., 62, 243–265. [Google Scholar]
  • Boss P. K., Davies C., Robinson S. P., 1996. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol., 111, 1059–1066. [CrossRef] [PubMed] [Google Scholar]
  • Burketova L., Trda L., Ott P. G., Valentova O., 2015. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv., 33, 994–1004. [CrossRef] [Google Scholar]
  • Buzón-Durán L., Langa-Lomba N., González-García V., Casanova-Gascón J., Martín-Gil J., Pérez-Lebeña E., Martín-Ramos P., 2021. On the applicability of chitosan oligomers-amino acid conjugate complexes as eco-friendly fungicides against grapevine trunk pathogens. Agronomy, 11, 324. [CrossRef] [Google Scholar]
  • Calvo P., Nelson L., Kloepper, J. W., 2014. Agricultural uses of plant biostimulants. Plant Soil, 383, 3–41. [CrossRef] [Google Scholar]
  • Cárdenas-Triviño G., Vergara-González L., Salamanca C., 2018. Fungicide properties in vitro of chitosan ethyl carbamate in the control of vineyards fungies in Chile. J. Chil. Chem. Soc., 63, 4217–4221. [CrossRef] [Google Scholar]
  • Carollo C., Caimi G., 2012. Wine consumption in the mediterranean diet: old concepts in a new sight. Food Nutr. Sci., 3, 1726–1733. [Google Scholar]
  • Cheba B., 2020. Chitosan: properties, modifications and food nanobiotechnology. Procedia Manuf., 46, 652–658. [CrossRef] [Google Scholar]
  • Chen H.-P., Xu L.-L., 2005. Isolation and characterization of a novel chitosan-binding protein from non-heading chinese cabbage leaves. J. Integr. Plant Biol., 47, 452–456. [CrossRef] [Google Scholar]
  • Chen J. Y., Wen P. F., Kong W. F., Pan Q. H., Wan S. B., Huang W. D., 2006. Changes and subcellular localizations of the enzymes involved in phenylpropanoid metabolism during grape berry development. Plant Physiol., 163, 115–127. [CrossRef] [Google Scholar]
  • Cobos R., Mateos R. M., Álvarez-Pérez J. M., Olego M. A., Sevillano S., González-García S., Garzon-Jimeno E., Coque J. J., 2015. Effectiveness of natural antifungal compounds in controlling infection by grapevine trunk disease pathogens through pruning wounds. Appl. Environ. Microbiol., 81, 6474–6483. [CrossRef] [PubMed] [Google Scholar]
  • Commission Implementing Regulation (EU) No 563/2014 of 23 May 2014 approving the basic substance chitosan hydrochloride in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011 (2014) Offical Journal, p.5–7 [Google Scholar]
  • Costa R., Fraga H., Fonseca A., Cortázar-Atauri I. G., Val M. C., Carlos C., Reis S., Santos J. A., 2019. Grapevine phenology of cv. Touriga Franca and Touriga Nacional in the Douro wine region: modelling and climate change projections. Agronomy, 9, 1–20. [Google Scholar]
  • Council Regulation (EC) No 1107/2009 of the European Parliamento and of the Council concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC (2009) Official Journal, 1–47. [Google Scholar]
  • Das S. N., Madhuprakash J., Sarma P. V. S. R. N., Purushotham P., Suma K., Manjeet K., Rambabu S., El Gueddari N. E., Moerschbacher B. M., Podile A. R., 2015. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit. Rev. Biotechnol., 35, 29–43. [CrossRef] [PubMed] [Google Scholar]
  • De Bona G. S., Vincenzi S., De Marchi F., Angelini E., Bertazzon N., 2021. Chitosan induces delayed grapevine defense mechanisms and protects grapevine against Botrytis cinerea. J. Plant Dis. Prot., 128, 715–724. [CrossRef] [Google Scholar]
  • de la Rosa L. A., Moreno-Escamilla J. O., Rodrigo-García J., Alvarez-Parrilla E., 2018. Phenolic compounds. In: Postharvest Physiology and Biochemistry of Fruits and Vegetables.253–271. Elhadi M. Yahia (ed.), Elsevier, USA. [Google Scholar]
  • Dermastia M., Bertaccini A., Constable F., Mehle, N., 2017. Grapevine yellows diseases and their phytoplasma agents – biology and detection. 99p. Springer Cham, Switzerland. [Google Scholar]
  • Dietrich R., Ploss K., Heil M., 2005. Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant, Cell … Environment., 28, 211–222. [CrossRef] [Google Scholar]
  • Dixon R. A., Achnine L., Kota P., Liu C. J., Reddy M. S., Wang L., 2002. The phenylpropanoid pathway and plant defense - a genomics perspective. Mol. Plant Pathol., 3, 371–90. [CrossRef] [Google Scholar]
  • du Jardin P., 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic., 196, 3–14. [CrossRef] [Google Scholar]
  • Duxbury M., Hotter G., Reglinski T., Sharpe N., 2004. Effect of chitosan and 5-chlorosalicylic acid on total phenolic content of grapes and wine. Am. J. Enol. Vitic., 55, 191–194. [CrossRef] [Google Scholar]
  • El Ghaouth A., Arul J., Grenier J., Benhamou N., Asselin A., Bélanger R., 1994. Effect of chitosan on cucumber plants: suppression of Pythium aphanidermatum and induction of defense reactions. Phytopathology, 84, 313–320. [CrossRef] [Google Scholar]
  • Elad Y., 1994. Biological control of grape grey mould by Trichoderma harzianum. Crop Prot., 13, 35–38. [CrossRef] [Google Scholar]
  • Feliziani E., Smilanick J. L., Margosan D. A., Mansour M. F., Romanazzi G., Gu S., Gohil H. L., Ames Z. R., 2013. Preharvest fungicide, potassium sorbate, or chitosan use on quality and storage decay of table grapes. Plant Dis., 97, 307–314. [CrossRef] [PubMed] [Google Scholar]
  • Fernández-Mar M. I., Mateos R., García-Parrilla M. C., Puertas B., Cantos-Villar E., 2012. Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: A review. Food Chem., 130, 797–813. [CrossRef] [Google Scholar]
  • Ferreira R. B., Monteiro S. S., Piçarra-Pereira M. A., Teixeira A. R., 2004. Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability. Trends Biotechnol., 22, 168–173. [CrossRef] [Google Scholar]
  • Ferreira, S.S., Antunes, M.S., 2021. Re-engineering plant phenylpropanoid metabolism with the aid of synthetic biosensors. Front. Plant Sci., 12:701385. [CrossRef] [Google Scholar]
  • Ferri M., Tassoni A., Franceschetti M., Righetti L., Naldrett M. J., Bagni N., 2009. Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics, 9, 610–624. [CrossRef] [PubMed] [Google Scholar]
  • Franco F., Iriti M., 2007. Callose synthesis as a tool to screen chitosan efficacy in inducing plant resistance to pathogens. Caryologia, 60, 121–124. [CrossRef] [Google Scholar]
  • Garde-Cérdan T., Mancini V., Carrasco-Quiroz M., Servili A., Gutiérrez-Gamboa G., Foglia R., Pérez-Álvarez E. P., Romanazzi G., 2017. Chitosan and laminarin as alternatives to copper for Plasmopara viticola control: effect on grape amino acid. J. Agric. Food Chem., 65, 7379–7386. [CrossRef] [PubMed] [Google Scholar]
  • Garrido J., Borges F., 2013. Wine and grape polyphenols - A chemical perspective. Food Res. Int., 54, 1844–1858. [CrossRef] [Google Scholar]
  • Gessler C., Pertot I., Perazzolli M., 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr., 50, 3–44. [Google Scholar]
  • Gramaje D., Mostert L., Groenewald J. Z., Crous P.W., 2015. Phaeoacremonium: from esca disease to phaeohyphomycosis. Fungal Biol., 119, 759–783. [CrossRef] [Google Scholar]
  • Gramaje D., Úrbez-Torres J. R., Sosnowski M. R., 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Dis. 102, 12–39. [CrossRef] [PubMed] [Google Scholar]
  • Gutiérrez-Gamboa G., Moreno-Simunovic Y., 2021. Seaweeds in viticulture: a review focused on grape quality. Ciência Téc. Vitiv, 36, 9–21. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gutiérrez-Gamboa G., Portu J., Santamaría P., López R., Garde-Cerdán T., 2017. Effects on grape amino acid concentration through foliar application of three different elicitors. Food Res. Int., 99, 688–692. [CrossRef] [Google Scholar]
  • Gutiérrez-Gamboa G., Pérez-Álvarez E. P., Rubio-Bretón P., Garde-Cérdan T., 2019. Changes on grape volatile composition through elicitation with methyl jasmonate, chitosan, and a yeast extract in Tempranillo (Vitis vinifera L.) grapevines. Sci. Hortic., 244, 257–262. [CrossRef] [Google Scholar]
  • Hamed I., Ozogul F., Regenstein J. M. 2016. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends in Food Science … Technology., 48, 40–50. [CrossRef] [Google Scholar]
  • Harding D., Sashiwa H., 2015. Advances in marine chitin and chitosan. MDPI AG, Switzerland. [Google Scholar]
  • Héloir M.-C., Adrian M., Brulé D., Claverie J., Cordelier S., Daire X., Dorey S., Gauthier A., Lemaître-Guillier C., Negrel J., Trdá L., Trouvelot S., Vandelle E., Poinssot B., 2019. Recognition of elicitors in grapevine: from MAMP and DAMP perception to induced resistance. Front. Plant Sci., 10, 1–17. [CrossRef] [Google Scholar]
  • Huq T., Khana A., Brown D., Dhayagude N., He Z., Ni I., 2022. Sources, production and commercial applications of fungal chitosan: a review. J. Bioresour. Bioprod. 7, 85–98. [CrossRef] [Google Scholar]
  • Iriti M., Faoro F., 2009. Bioactivity of grape chemicals for human health. Nat. Prod. Commun., 4, 611–634. [PubMed] [Google Scholar]
  • Iriti M., Picchi V., Rossoni M., Gomarasca S., Ludwig N., Gargano M., Faoro F., 2009. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure., Environ. Exp. Bot. 66, 493–500. [CrossRef] [Google Scholar]
  • Iriti M., Vitalini S., Tommaso G. D. I., Borgo M., Faoro F., 2011. New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine. Aus. J. Grape Wine R., 17, 263–269. [CrossRef] [Google Scholar]
  • Iriti M., Varoni E. M., 2015. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res., 22, 2935–2944. [CrossRef] [PubMed] [Google Scholar]
  • Jacometti M. A., Wratten S. D., Walter M., 2010. Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust. J. Grape Wine Res., 16, 154–172. [CrossRef] [Google Scholar]
  • Kabanov V. L., Novinyuk L. V., 2020. Chitosan application in food technology: A review of recent advances. Food Syst., 3, 10–15. [CrossRef] [Google Scholar]
  • Kaku H., Nishizawa Y., Ishii-Minami N., Akimoto-Tomiyama C., Dohmae N., Takio K., Minami E., Shibuya N., 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci., USA 103, 11086–11091. [CrossRef] [PubMed] [Google Scholar]
  • Kaur S., Dhillon G. S., 2014. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol., 40, 155–175. [CrossRef] [PubMed] [Google Scholar]
  • Kauss H., Jeblick W., Domard A., 1989. The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta, 178, 385–392. [CrossRef] [PubMed] [Google Scholar]
  • Kim I.-Y., Seo S.-J., Moon H.-S., Yoo M.-K., Park I.-Y., Kim B.-C., Cho C.-S., 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv., 26, 1–21. [CrossRef] [Google Scholar]
  • Kobayashi S., Ishimaru M., Hiraoka K., Honda C., 2002. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta, 215, 924–933. [CrossRef] [PubMed] [Google Scholar]
  • Laura R., Franceschetti M., Ferri M., Tassoni A., Bagni N., 2007. Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Caryologia, 60, 169–171. [CrossRef] [Google Scholar]
  • Matei P. Ţ., Iacomi B., Gan G., 2009. Fungi Associated with Esca Decline and their “in vitro” Control by Chitosan. In: Conference Scientific Papers. Bucharest, Rumania. [Google Scholar]
  • Meng X., Tian S., 2009. Effects of preharvest application of antagonistic yeast combined with chitosan on decay and quality of harvested table grapefruit. J. Sci. Food Agric., 89, 1838–1842. [CrossRef] [Google Scholar]
  • Nascimento T., Rego C., Oliveira H., 2007. Potential use of chitosan in the control of grapevine trunk diseases. Phytopathol. Mediterr., 46, 218–224. [Google Scholar]
  • Nge K. L., Nwe N., Chandrkrachang S., Stevens W. F., 2006. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci., 170, 1185–1190. [CrossRef] [Google Scholar]
  • OIV - International Organisation of Vine and Wine, 2020. State of the world vitivinicultural sector in 2019. International Organisation of Vine and Wine., 1–15. [Google Scholar]
  • OIV - International Organisation of Vine and Wine, 2021. State of the world vitivinicultural sector in 2020. International Organisation of Vine and Wine., 1–18. [Google Scholar]
  • Oliveira M. J. R. A. Vasconcelos M. W., Castro S., Bertaccini A., Carvalho S. M. P., 2019a. Does salicylic acid alleviate the impacts on growth, development and productivity of “flavescence dorée” in Portuguese “Vinhos Verdes” grapevines? Phytopathogenic Mollicutes, 9, 167–168. [CrossRef] [Google Scholar]
  • Oliveira M. J. R. A., Vasconcelos M. W., Lemos I. C., Bertaccini A., Carvalho S. M. P., 2019b. Methyl jasmonate triggers metabolic responses and gene expression on Vitis vinifera cultivar Loureiro infected with “flavescence dorée”. Phytopathogenic Mollicutes, 9, 165–166. [CrossRef] [Google Scholar]
  • Oliveira M. J. R. A., Castro S., Paltrinieri S., Bertaccini A., Sottomayor M., Santos C. S., Vasconcelos M. W., Carvalho S. M. P., 2020. “Flavescence dorée” impacts growth, productivity and ultrastructure of Vitis vinifera plants in Portuguese “Vinhos Verdes” region. Sci. Hortic., 261, 108742. [CrossRef] [Google Scholar]
  • Pandey P., Verma M. K., De N., 2018. Chitosan in agricultural context - A review. Bull. Env. Pharmacol. Life Sci., 7, 87–96. [Google Scholar]
  • Pereira D. M., Valentão P., Pereira J. A., Andrade P. B., 2009 Phenolics: From chemistry to biology. Molecules, 14, 2202–2211. [CrossRef] [Google Scholar]
  • Petutschnig E. K., Jones A. M. E., Serazetdinova L., Lipka U., Lipka V., 2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem., 285, 28902–28911. [CrossRef] [Google Scholar]
  • Philibert T., Lee B. H., Fabien N., 2017. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 181, 1314–1337. [CrossRef] [PubMed] [Google Scholar]
  • Pichyangkura R., Chadchawan S., 2015. Biostimulant activity of chitosan in horticulture. Sci. Hortic., 196, 49–65. [CrossRef] [Google Scholar]
  • Portu J., López R., Baroja E., Santamaría P., Garde-Cerdán T., 2016. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: methyl jasmonate, chitosan, and yeast extract. Food Chem., 201, 213–221. [CrossRef] [Google Scholar]
  • Qin Y., Li P., 2020. Antimicrobial chitosan conjugates: Current synthetic strategies and potential applications. Int. J. Mol. Sci., 21, 1–19. [Google Scholar]
  • Reglinski T., Elmer P. A. G., Taylor J. T., Wood P. N., Hoyte S. M., 2010. Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathol., 59, 882–890. [CrossRef] [Google Scholar]
  • Romanazzi G., Nigro F., Ippolito A., DiVenere D., Salerno M., 2002. Effects of pre- and postharvest chitosan treatments to control storage grey mold of table grapes. J. Food Sci., 67, 1862–1867. [CrossRef] [Google Scholar]
  • Romanazzi G., Gabler F. M., Smilanick J. L., 2006. Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis., 55, 445–450. [CrossRef] [PubMed] [Google Scholar]
  • Romanazzi G., Karabulut O. A., Smilanick J. L., 2007 Combination of chitosan and ethanol to control postharvest gray mold of table grapes. Postharvest Biol. Tec., 45, 134–140. [CrossRef] [Google Scholar]
  • Romanazzi G., Gabler F. M., Margosan D., Mackey B. E., Smilanick J. L., 2009a. Effect of chitosan dissolved in different acids on its ability to control postharvest gray mold of table grape. Phytopathology, 99, 1028–1036. [CrossRef] [PubMed] [Google Scholar]
  • Romanazzi G., D'Ascenzo D., Murolo S., 2009b. Field treatment with resistance inducers for the control of grapevine bois noir. J. Plant Pathol., 91, 677–682. [Google Scholar]
  • Romanazzi G., Murolo S., Feliziani E., 2013. Effects of an Innovative strategy to contain grapevine Bois noir: field treatment with resistance inducers. Phytopathology, 103, 785–791. [CrossRef] [PubMed] [Google Scholar]
  • Romanazzi G., Mancini V., Foglia R., Marcolini D., Kavari M., Piancatelli S., 2021. Use of chitosan and other natural compounds alone or in different strategies with copper hydroxide for control of grapevine downy mildew. Plant Dis., 105, 3261–3268. [CrossRef] [PubMed] [Google Scholar]
  • Rouphael Y., Colla G., 2020. Editorial: Biostimulants in Agriculture. Front. Plant Sci., 11, 1–7. [CrossRef] [Google Scholar]
  • Ruiz-García Y., Gómez-Plaza E., 2013. Elicitors: A tool for improving fruit phenolic content. Agriculture, 3, 33–52. [CrossRef] [Google Scholar]
  • Shen Y., Yang H., 2017. Effect of preharvest chitosan- g -salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Sci. Hortic., 224, 367–373. [CrossRef] [Google Scholar]
  • Silva V., Singh R. K., Gomes N., Soares B. G., Silva A., Falco V., Capita R., Alonso-Calleja C., Pereira J. E., Amaral J. S., Igrejas G., Poeta P., 2020. Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants, 9, 178. [CrossRef] [PubMed] [Google Scholar]
  • Singh R. K., Soares B., Goufo P., Castro I., Cosme F., Pinto-Sintra A. L., Inês A., Oliveira A. A., Falco V., 2019. Chitosan upregulates the genes of the ROS pathway and enhances the antioxidant potential of grape (Vitis vinifera L. 'Touriga Franca' and 'Tinto Cão') tissues. Antioxidants, 8, 525. [CrossRef] [PubMed] [Google Scholar]
  • Singh R. K., Martins V., Soares B., Castro I., Falco V., 2020. Chitosan application in vineyards (Vitis vinifera L. cv. Tinto Cão) induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes. Int. J. Mol. Sci., 21, 306. [CrossRef] [Google Scholar]
  • Tessarin P., Chinnici F., Donnini S., Liquori E., Riponi C., Rombolà A. D., 2016. Influence of canopy-applied chitosan on the composition of organic cv. Sangiovese and Cabernet Sauvignon berries and wines. Food Chem., 210, 512–519. [CrossRef] [Google Scholar]
  • Trotel-Aziz P., Couderchet M., Vernet G., Aziz A. 2006. Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur. J. Plant Pathol., 114, 405–413. [CrossRef] [Google Scholar]
  • van D’Abruzzo G., Buonatesta R., Cutsem P. van, 2014. COS-OGA: A novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew. Crop Prot., 65, 129–137. [CrossRef] [Google Scholar]
  • Vitalini S., Gardana C., Zanzotto A., Faoro F., 2011. From vineyard to glass: agrochemicals enhance the melatonin and total polyphenol contents and antiradical activity of red wines. J. Pineal Res., 51, 278–285. [CrossRef] [Google Scholar]
  • Vitalini S., Ruggiero A., Rapparini F., Neri L., Tonni M., Iriti M., 2014. The application of chitosan and benzothiadiazole in vineyard (Vitis vinifera L. cv Groppello Gentile) changes the aromatic profile and sensory attributes of wine. Food Chem., 162, 192–205. [CrossRef] [Google Scholar]
  • Walters D., Newton A. C., Lyon G., 2007. Induced resistance for plant defense: a sustainable approach to crop protection. 272 p. Wiley, New Jersey. [Google Scholar]
  • Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Mandelco L., Sechrest J., Lawrence T. G., van Etten J., 1989. A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol., 171, 6455–6467. [CrossRef] [PubMed] [Google Scholar]
  • Xu J., Zhao X., Han X., Du Y., 2007. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic. Biochem. Physiol., 87, 220–228. [CrossRef] [Google Scholar]
  • Zahavi T., Sharon R., Sapir G., Mawassi M., Dafny-Yelin M., Naor V., 2013. The long-term effect of Stolbur phytoplasma on grapevines in the Golan Heights. Aust. J. Grape Wine Res., 19, 277–284. [CrossRef] [Google Scholar]
  • Zhao Q., He F., Reeves M. J., Pan Q. H., Duan C. Q., Wang J. 2016. Expression of structural genes related to anthocyanin biosynthesis of Vitis amurensis. J. For. Res., 27, 647–657. [CrossRef] [Google Scholar]
  • Zheng F., Chen L., Zhang P., Zhou J., Lu X., Tian W., 2020. Carbohydrate polymers exhibit great potential as effective elicitors in organic agriculture: A review. Carbohydr. Polym., 230, 115637. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.