Open Access
Ciência Téc. Vitiv.
Volume 33, Number 2, 2018
Page(s) 116 - 124
Published online 14 September 2018
  • Albers E., Larsson C., Liden G., Niklasson C., Gustafsson L. 1996. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl. Environ. Microbiol, 62, 3187–3195. [Google Scholar]
  • Barbosa, C., Mendes-Faia, A., Mendes-Ferreira, A. 2012. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol., 160, 87–93. [CrossRef] [PubMed] [Google Scholar]
  • Bely M., Sablayrolles J.M., Barre P. 1990. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. . J. Ferment. Bioeng, 70, 246–252. [CrossRef] [Google Scholar]
  • Bisson L.F. 1991. Influence of nitrogen on yeast and fermentation of grapes. In: Proceedings of the International Symposium on Nitrogen in Grapes and Wine. Am. Soc. Enol. Vitic. Davis 78–89. [Google Scholar]
  • Boido E., Lloret A., Medina K., Fariña L., Carrau F., Versini G., Dellacassa E. 2003. Aroma composition of Vitis vinifera cv. Tannat: the typical red wine from Uruguay. J. Agr. Food Chem., 51(18), 5408–5413. [CrossRef] [PubMed] [Google Scholar]
  • Burin, V. M., Gomes, T. M., Caliari, V., Rosier, J .P, Bordignon Luiz, M. T. 2015. Establishment of influence the nitrogen content in musts and volatile profile of white wines associated to chemometric tools. Microchemical Journal, 122, 20–28. [CrossRef] [Google Scholar]
  • Butzke C. 1998. Survey of yeast assimilable nitrogen status in musts from California, Oregon, and Washington. Am. J. Enol. Vitic, 49, 220–224. [Google Scholar]
  • Charles M., Martin B., Ginies C., Etievant P., Coste G., Guichard E. 2000. Potent aroma compounds of two red wine vinegars. J. Agric. Food Chem., 48, 70–77. [CrossRef] [PubMed] [Google Scholar]
  • Etievant P.X., 1991. Wine. In: Volatile Compounds in Foods and Beverages. 483–587. Marse H. (ed), Marcel Dekker Inc., New York. [Google Scholar]
  • Ferreira V., López R., Cacho J. 2000. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric., 80, 1659–1667. [CrossRef] [Google Scholar]
  • Ferreira V., Lopez R., Escudero A., Cacho J. 1998. The aroma of Grenache red wine: Hierarchy and nature of its main odorants. J. Sci. Food Agric., 77, 259–267. [CrossRef] [Google Scholar]
  • Freitas V., Ramalho P., Azevedo Z., Macedo A. 1999. Identification of some volatile descriptors of the rock-rose-like aroma of fortified red wines from Douro demarcated region. J. Agric. Food Chem., 47, 4327–4331. [CrossRef] [PubMed] [Google Scholar]
  • García-Romero E., Chacón J.L., Martínez J., Izquierdo-Cañas PM. 2003. Changes in volatile compounds during ripening in grapes of Airén, Macabeo and Chardonnay white varieties grown in La Mancha region (Spain). Food Sci. Technol. Inter., 9, 33–41. [CrossRef] [Google Scholar]
  • Garde-Cerdán T., Ancín-Azpilicueta C. 2008. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT-Food Sci. Technol., 41, 501–510. [CrossRef] [Google Scholar]
  • Genovese A., Piombino P., Lisauti M.T., Moio L. 2005. Ocurrence of furaneol (4-hydroxy-2,5-dimethyl-3(2H) Furanone in some wines from Italian native grapes. Ann. Chim., 95, 415–419. [CrossRef] [PubMed] [Google Scholar]
  • Gómez M.J., Cacho J.F., Ferreira V., Vicario I.M., Heredia F.J. 2007.Volatile components of Zalema white wines. Food Chem., 100, 1464–1473. [CrossRef] [Google Scholar]
  • Gürbüz O., Rouseff J.M., Rouseff R.L. 2006. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography-olfactometry and gas chromatographymass spectrometry. J. Agric. Food Chem., 54, 3990–3996. [CrossRef] [PubMed] [Google Scholar]
  • Guth H. 1997. Quantification and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem., 45, 3027-3032. [Google Scholar]
  • Hernández-Orte P., Bely M., Cacho J., Ferreira V. 2006. Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strain during fermentation in controlled synthetic media. Aust. J. Grape Wine. Res., 12, 150–160. [CrossRef] [Google Scholar]
  • Hernández-Orte P., Cacho J.F., Ferreira V. 2002. Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiences with model solutions and chemometric study. J Agric. Food Chem., 50, 2891–2899. [CrossRef] [PubMed] [Google Scholar]
  • Ibarz M., Ferreira V., Hernández-Orte P., Loscos N., Cacho J. 2006. Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavors precursors extracted from grapes. J. Chromatogr. A, 1116, 217–229. [CrossRef] [PubMed] [Google Scholar]
  • ISO 8589, 2010. Análisis Sensorial. Guía general para el diseño de sala de cata. In: Análisis Sensorial. 53-76. AENOR (Ed), Madrid. [Google Scholar]
  • ISO 87022, 1992. Análisis Sensorial. Utensilios. Copa para la degustación de vino. In: Análisis Sensorial. 77-80. AENOR (Ed), Madrid. [Google Scholar]
  • Izquierdo-Cañas P.M., García-Romero E., Heras-Manso J.M., Fernández-González M. 2014. Influence of sequential inoculation of Wickerhamomyces anomalus and Saccharomyces cerevisiae in the quality of red wines. Eur. Food Res. Technol., 239, 279-286. [Google Scholar]
  • Lopez R., Ferreira V., Hernández P., Cacho J. 1999. Identification of impact odorants of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: a comparative study. J. Sci. Food Agric., 79, 1461–1467. [CrossRef] [Google Scholar]
  • Lopez R., Ortin N., Perez-Trujillo J.P., Cacho J., Ferreira V. 2003. Impact odorants of different white wines from the Canary Islands. J. Agric. Food Chem., 51, 3419–3425. [CrossRef] [PubMed] [Google Scholar]
  • Moyano L., Zea L., Moreno J., Medina M. 2002. Analytical study of aromatic series in sherry wines subjected to biological ageing. J. Agric. Food Chem., 50, 7356–7361. [CrossRef] [PubMed] [Google Scholar]
  • OIV, 2014. Compendium of international methods of wine and must analysis. 277 p. International Organisation of Vine and Wine, Paris. [Google Scholar]
  • Peinado R.A., Moreno J., Medina M., Mauricio J.C. 2004. Changes in volatile compounds and aromatic series in sherry wine high gluconic acid levels subjected to aging by submerged flor yeast cultures. Biotechnol. Lett. 26, 757–762. [CrossRef] [PubMed] [Google Scholar]
  • Sánchez-Palomo E., Gómez García-Carpintero E., Alonso-Villegas R., González-Viñas M. A. 2010. Flavour Fragr. J., 25 (6), 456–462. [Google Scholar]
  • Sánchez-Palomo E., Gómez-García-Carpintero E., González-Viñas MA. 2015. Aroma Fingerprint Characterisation of La Mancha Red Wines. S. Afr. J. Enol. Vitic., 36 (1): 117–125. [Google Scholar]
  • Sánchez-Palomo, E., Pérez-Coello, M. S., Díaz-Maroto, M. C., González-Viñas, M. A., Cabezudo, M. D. 2006. Contribution of free and glycosidically-bound volatile compounds to the aroma of muscat ‘‘a petit grains’’ wines and effect of skin contact. Food Chem., 95, 279–289. [CrossRef] [Google Scholar]
  • Torrea, D., Varela, C, Ugliano, M., Ancin-Azpilicueta, C., Leigh Francis, I., Henschke, P.A. 2011. Comparison of inorganic and organic nitrogen supplementation of grape juice –Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chem., 127, 1072–1083. [CrossRef] [PubMed] [Google Scholar]
  • Vilanova M., Ugliano-Varela C., Siebert T., Pretorius I.S., Henschke PA. 2007. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl. Microbiol. Biotechnol., 77,145–157. [CrossRef] [PubMed] [Google Scholar]
  • Zea L., Moyano L., Moreno J., Medina M. 2007. Aroma series as fingerprints for biological ageing in fino sherry-type wines. J. Sci. Food Agric., 87, 2319–2326. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.