Open Access
Ciência Téc. Vitiv.
Volume 33, Number 2, 2018
Page(s) 102 - 115
Published online 24 August 2018
  • Alonso A.M., Castro R., Rodrigues M.C., Guillen D.A., Barros C.G., 2004. Study of the antioxidant power of brandies and vinegars derived from Sherry wines and correlation with their content in polyphenols. Food Res. Int., 37, 715–721. [CrossRef] [Google Scholar]
  • Andlauer W., Stumpf C., Fürst P., 2000. Influence of the acidification process on phenolic compounds. J. Agric. Food Chem., 48, 3533–3536. [CrossRef] [PubMed] [Google Scholar]
  • AOAC, 2016. Official methods of analysis of A.O.A.C. International, 20ª Edition. 3000 p. AOAC International, USA. [Google Scholar]
  • Bakir S., Devecioglu D., Kayacan S., Toydemic G., Karbancioglu-Guler F., Capanoglu E., 2017. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol., 243, 2083–2094. [CrossRef] [Google Scholar]
  • Brand-Williams W., Cuvelier M.E., Berset C., 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 28, 25–30. [Google Scholar]
  • Budak H.N., Guzel-Seydin Z.B., 2010. Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J. Sci. Food Agric., 90, 2021–2016. [PubMed] [Google Scholar]
  • Cerezo A.B., Álvarez-Fernández M.A., Hornedo-Ortego R., Troncoso A.M, García-Parrilla M.C., 2014. Phenolic composition of vinegars over an accelerated aging process using different wood species (acacia, cherry, chestnut, and oak): effect of wood toasting. J. Agric. Food Chem., 62, 4369–4376. [CrossRef] [PubMed] [Google Scholar]
  • Cerezo A.B., Tesfaye W., Soria-Díaz M.E., Jesús-Torija M., Mateo E., Garcia-Panilla C., Troncoso A.M., 2010. Effect of wood on the phenolic profile and sensory properties of wine vinegars during ageing. J. Food Compos. Anal., 23, 175–184. [CrossRef] [Google Scholar]
  • Cerezo A.B., Tesfaye W., Torija M.J., Mateo E., García-Parrilla M.C., Toncoso A.M., 2008. The phenolic composition of red wine vinegar produced in barrels made from different woods. Food Chem., 109, 606–615. [CrossRef] [Google Scholar]
  • Charoenkiatkul S., Thiyajai P., Judprasong K., 2016. Nutrients and bioactive compounds in popular and indigenous durian (Duriozibethinusmurr.). Food Chem., 193, 181–186. [CrossRef] [PubMed] [Google Scholar]
  • Cristino R., Costa E., Cosme F., Jordão A.M., 2013. General phenolic characterization, individual anthocyanin and antioxidant capacity of matured red wines from two Portuguese appellations of origins. J. Sci. Food Agric., 93, 2486–2493. [CrossRef] [PubMed] [Google Scholar]
  • Dallas C., Laureano O., 1994. Effect of SO2 on the extraction of individual anthocyanins and colored matter of three Portuguese grape varieties during winemaking. Vitis, 33, 41–37. [Google Scholar]
  • Decreto-Lei n.º 174/2007. Diário da República de 08 de Maio, I Série, 88, 2995. [Google Scholar]
  • Durán E.G., Mejías R.C., Marín R.M., Riuz M.J.B., Dodero M.C.R., 2011. Accelerated aging of a Sherry wine vinegar on an industrial scale employing microoxygenation and oak chips. Eur. Food Res. Technol., 232, 241–254. [CrossRef] [Google Scholar]
  • Ebihara K., Nakajima A., 1998. Effect of acid and vinegar on blood glucose and insulin responses to orally administered sucrose and starch. Agric. Biol. Chem., 52, 1311–1312. [Google Scholar]
  • Gonçalves R., 2017. Portuguese spend 11.4 million euros on vinegar. Hipersuper, 351, 22–23. [Google Scholar]
  • Guise R., Filipe-Ribeiro L., Nascimento D., Bessa O., Nunes F.M., Cosme F., 2014. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization. Food Chem., 156, 250–257. [CrossRef] [PubMed] [Google Scholar]
  • Hadfield L.C., Beard L.P., Leonard-Green T.K., 1989. Calcium content of soup stocks with added vinegar. J. Acad. Nutr. Diet., 89, 1810–1811. [Google Scholar]
  • Ho C.W., Lazim A.M., Fazry S., Zaki U.K.H., Lim S.J., 2017. Varieties, production, composition and health benefits of vinegars: A review. Food Chem., 221, 1621–1630. [CrossRef] [PubMed] [Google Scholar]
  • Johnston C.S., Buller A.J., 2005. Vinegar and peanut products as complementary foods to reduce postprandial glycemia. J. Am. Diet. Assoc., 105, 1939–1942. [CrossRef] [PubMed] [Google Scholar]
  • Jordão A.M., Simões S., Correia A.C., Gonçalves F.J., 2012. Antioxidant activity evolution during Portuguese red wine vinification and their relation with the proanthocyanidin and anthocyanin composition. J. Food Process. Pres., 36, 298–309. [CrossRef] [Google Scholar]
  • Kawa-Rygielska J., Adamenko K., Kucharska A.Z., Piórecki N., 2018. Bioactive compounds in cornelian cherry vinegars. Molecules, 23, 379. [CrossRef] [Google Scholar]
  • Kelebek H., Kadiroğlu P., Demircan N.B., Selli S., 2017. Screening of bioactive components in grape and apple vinegars: antioxidant and antimicrobial potential. J. Inst. Brew., 123, 407–416. [CrossRef] [Google Scholar]
  • Kramling T.E., Singleton V.L., 1969. An estimate of the non flavonoid phenols in wines. Am. J. Enol. Vitic., 20, 86–92. [Google Scholar]
  • Luo M., Wu L.R., Gao W.H., Yuan M., Li S.H., Ren M., Li G., 2004. Studies on the antimicrobial activity of bamboo vinegar and its enhancive effects with other Chinese herbal medicines. J. Bamboo Res. 23, 46–49. [Google Scholar]
  • Mas A., Torija M.J., García-Parrilla M.C., Troncoso A.M., 2014. Acetic acid bacteria and the production and quality of wine vinegar. Sci. World J., Article ID 394671. [Google Scholar]
  • Masino F., Chinnici F., Bendini A., Montevecchi G., Antonelli A., 2008. A study on relationship among chemical, physical, and qualitative assessment in traditional balsamic vinegar. Food Chem., 106, 90–95. [CrossRef] [Google Scholar]
  • Mazza S., Murooka Y., 2009. Vinegars through the ages. In: Vinegars of the world. 17–39. Solieri L., Giudici P. (Eds.), Springer, Milan. [CrossRef] [Google Scholar]
  • Medina E., Romero C., Brenes M., De Castro A., 2007. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Protect. 70, 1194–1199. [CrossRef] [Google Scholar]
  • Morales M.L., Tesfaye W., García-Parrilla M.C., Casas J.A., Troncoso A.M., 2001. Sherry wine vinegar: physicochemical changes during the acetification process. J. Sci. Food Agric., 81, 611–619. [CrossRef] [Google Scholar]
  • Nakamura K., Ogasawara Y., Endou K., Fujimori S., Koyama M., Akano H., 2010. Phenolic compounds responsible for the superoxide dismutase-like activity in high-brix apple vinegar. J. Agric. Food Chem., 58, 10124–10132. [CrossRef] [PubMed] [Google Scholar]
  • Natera R., Castro R., Valme-Garcia-Moreno M.D., Hernandez M.J., Garcia-Barroso C., 2003. Chemometric studies of vinegars from different raw materials and processes of production. J. Agric. Food Chem., 51, 3345–3351. [CrossRef] [PubMed] [Google Scholar]
  • OIV, 2012. Recueil des méthodes internationales d’analyse des vins et moûts. 488 p. (vol. 1). Organisation International de la Vigne et du Vin, Paris. [Google Scholar]
  • Ordoudi S.A., Mantzouridou F., Daftsiou E., Hatzidimitriou E., Nenadis N., Tsimidou M.Z., 2014. Pomegranate juice functional constituents after alcoholic and acetic fermentation. J. Funct. Foods, 8, 161–168. [CrossRef] [Google Scholar]
  • Ozturk I., Caliskan O., Tornuk F., Ozcan N., Yalcin H., Baslar M., Sagdic O., 2015. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT - Food Sci. Technol., 63, 144–151. [CrossRef] [Google Scholar]
  • Pinsirodom P., Rungcharoen J., Liumminful A., 2008. Quality of commercial wine vinegars evaluated on the basis of total polyphenol content and antioxidant properties. As. J. Food Ag-Ind., 1, 232–241. [Google Scholar]
  • Prior R.L., Wu X., Schaich K., (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 53, 4290–4302. [CrossRef] [PubMed] [Google Scholar]
  • Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231–1237. [CrossRef] [PubMed] [Google Scholar]
  • Ribéreau-Gayon P., Stronestreet E., 1965. Le dosage des anthocyanes dans le vin rouge. Bull. Soc. Chimie, 9, 2649–2652. [Google Scholar]
  • Rivero-Pérez M.D., Muñiz P., González SanJosé M.L., 2008. Contribution of anthocyanin fraction to the antioxidant properties of wine. Food Chem. Toxicol., 46, 2815–2822. [CrossRef] [PubMed] [Google Scholar]
  • Rizzon L.A., Miele A., 1998. Analytical characteristics of commercial vinegars of Brazilian wines. Braz. J. Food Technol., 1, 25–31. [Google Scholar]
  • Slobodníková L., Fialová S., Rendeková K., Kováč J., Mučaji P., 2016. Antibiofilm activity of plant polyphenols. Molecules, 21, 1717. [CrossRef] [Google Scholar]
  • Sun B., Leandro M.C., De Freitas V., Spranger M.I., 2006. Fractionation of red wine polyphenols by solid-phase extraction and liquid chromatography. J. Chromatogr. A, 1128, 27–38. [CrossRef] [PubMed] [Google Scholar]
  • Tagliazucchi D., Verzelloni E., Conte A., 2008. Antioxidant properties of traditional balsamic vinegar and boiled must model systems. Eur. Food Res. Technol., 227, 835–843. [CrossRef] [Google Scholar]
  • Tavares M., Jordão A.M., Ricardo-da-Silva J.M., 2017. Impact of cherry, acacia and oak chips on red wine phenolic parameters and sensory profile. OENO One, 51, 329–342. [CrossRef] [Google Scholar]
  • Tesfaye W., Morales M.L., Benítez B., García-Parrilla M.C., Troncoso A.M., 2004. Evolution of wine vinegar composition during accelerated aging with oak chips. Anal. Chim. Acta, 513, 239–245. [CrossRef] [Google Scholar]
  • Tesfaye W., Morales M.L., García-Parrilla M.C., Troncoso A.M., 2002. Wine vinegar: technology, authenticity and quality evaluation. Trends Food Sci. Technol., 13, 12–21. [CrossRef] [Google Scholar]
  • Ubeda C., Callejón R., Hidalgo C., Torija M.J., Troncoso A.M., Morales M.L., 2013. Employment of different processes for the production of strawberry vinegars: effects on antioxidant activity, total phenols and monomeric anthocyanins. LWT - Food Sci. Technol., 52, 139–145. [CrossRef] [Google Scholar]
  • Verzelloni E., Tagliazucchi D., Conte A., 2007. Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chem., 105, 564–571. [CrossRef] [Google Scholar]
  • Villaño D., Fernández-Pachón M.S., Troncoso A.M., García-Parrilla M.C., 2006. Influence of enological practices on the antioxidant activity of wines. Food Chem., 95, 394–404. [CrossRef] [Google Scholar]
  • Wang C.C., Chu C.Y., Chu K.O., Choy K.W., Khaw K.S., Rogers M.S., 2004. Trolox-equivalent antioxidant capacity assay versus oxygen radical absorbance capacity assay in plasma. Clin. Chem., 50, 952–954. [CrossRef] [PubMed] [Google Scholar]
  • Yokotsuka K., Sato M., Ueno N., Singleton V., 2000. Colour and sensory characteristics of Merlot red wines caused by prolonged pomace contact. J. Wine Res., 11, 7–18. [CrossRef] [Google Scholar]
  • Xu Q., Tao W., Ao Z., 2007. Antioxidant activity of vinegar melanoidins. Food Chem., 102, 841–849. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.