Open Access
Ciência Téc. Vitiv.
Volume 33, Number 2, 2018
Page(s) 125 - 135
Published online 21 September 2018
  • Aires A., Carvalho R., Matos M., Cranide V., Silva A.P., Gonçalves B., 2017. Variation of chemical constituents, antioxidant activity and endogenous plant hormones throughout different ripening stages of highbush blueberry (Vaccinium corymbosum L.) cultivars produced in Centre of Portugal. J. Food Biochem., 41, e12414. [CrossRef] [Google Scholar]
  • Apak R., Güçlü K., Özyürek M., Karademir S.E., 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 52, 7970–7981. [CrossRef] [PubMed] [Google Scholar]
  • Aubert C., Chalot G., 2018. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chem., 240, 524–533. [CrossRef] [PubMed] [Google Scholar]
  • Aurand J.-M., 2017. Point de conjoncture vitivinicole mondiale 2017. In: Conference de Presses. 24 Octobre 2017. International Organisation of Vine and Wine, Paris. (accessed 1 February 2018). [Google Scholar]
  • Bunea C.-I., Pop N., Babeş A.C., Matea C., Dulf F.V., Bunea A., 2012. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem. Cent. J., 6, 66. [Google Scholar]
  • Cantos E., Espín J.C., Tomás-Barberán F.A., 2002. Varietal differences among the polyphenol profiles of seven table grapes cultivars studied by LC-DAD-M-S-MS. J. agric. Food Chem., 50, 5691–5696. [CrossRef] [PubMed] [Google Scholar]
  • Castillo-Muñoz N., Gómez-Alonso S., García-Romero E., Hermosín-Gutiérrez I., 2007. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem., 55, 992–1002. [CrossRef] [PubMed] [Google Scholar]
  • Dakera M., Abdullah N., Vikineswary S., Goh P.C., Kuppusamy U.R., 2008. Antioxidant from maize and maize fermented by Marasmiellus sp. as stabiliser of lipid-rich foods. Food Chem., 107, 1092–1098. [Google Scholar]
  • Dani C., Oliboni L.S., Vanderlinde R., Bonatto D., Salvador M., Henriques J.A.P., 2007. Phenolic content and antioxidant activities of white and purple juices manufactured with organically-orconventionally-produced grapes. Food Chem. Toxicol., 45, 2574–2580. [CrossRef] [PubMed] [Google Scholar]
  • Daniel P.F., De Feudis D.F, Lott I. T., McCluer R.H., 1981. Quantitative microanalysis of oligosaccharides by high performance liquid chromatography. Carbohydr. Res., 97, 161–180. [CrossRef] [Google Scholar]
  • Ferrandino A, Carra A, Rolle L, Schneider A, Schubert A., 2012. Profiling of hydroxycinnamoyl tartrates and acylated anthocyanins in the skin of 34 Vitis vinifera genotypes. J. Agric. Food Chem., 60, 4931–4945. [CrossRef] [PubMed] [Google Scholar]
  • Flamini R., Mattivi F., Rosso M.D., Arapitsas P., Bavaresco L., 2013. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci., 14, 19651–19669. [CrossRef] [PubMed] [Google Scholar]
  • Ganeshpurkar A., Saluja A.K., 2017. The pharmacological potential of rutin. Saudi Pharm. J., 25, 149–164. [CrossRef] [PubMed] [Google Scholar]
  • Georgiev V., Ananga A., Tsolova V., 2014. Recent advances and uses of grape flavonoids as nutraceuticals. Nutr., 6, 391–415. [Google Scholar]
  • He F., Liang N.-N., Duan C.-Q., Wang J., Reeves M.J., 2017. Accumulation of anthocyanins in the skin and pulp of five different teinturier grapes. Acta Hortic., 1157, 73–82. [CrossRef] [Google Scholar]
  • He J.-J., Liu Y.-X., Pan Q.-H., Cui X.-Y., Duan C.-Q., 2010. Different Anthocyanin Profiles of the Skin and the Pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) Grape Berries. Molecules, 15, 1141–1153. [CrossRef] [PubMed] [Google Scholar]
  • Higdon J.V, Frei B., 2003. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr., 43, 89–143. [CrossRef] [PubMed] [Google Scholar]
  • Hussain T., Tan B., Yin Y., Blachier F., Tossou M. C. B., Rahu N., 2016. Oxidative stress and inflammation: what polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, ID 7432797, 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Isci B., Gokbayrak Z., Keskin N., 2015. Effects of cultural practices on total phenolics and vitamin C content of organic table grapes. S. Afr. J. Enol. Vitic., 36, 191–194. [Google Scholar]
  • IVV, 2017a. Evolução da Produção Nacional de Vinho por Região Vitivinícola, Série 2000/2001 a 2017/2018. Instituto da Vinha e do Vinho. (accessed 1 February 2018). [Google Scholar]
  • IVV, 2017b. Castas mais utilizadas. Instituto da Vinha e do Vinho. (accessed 1 February 2018). [Google Scholar]
  • Jogaiah S., Oulkar D.P., Vijapure A.N., Maske S.R., Sharma A.K., Somkuwar R.G., 2013. Influences of canopy management practices on fruit composition of wine grape cultivars grown in semi-arid tropical region of India. Afr. J. Agric. Res., 8, 3462–3472. [CrossRef] [Google Scholar]
  • Kok D., 2014. A review on grape growing in tropical regions. Turk. J. Agric. Nat. Sci., 1, 1236–1241. [Google Scholar]
  • Kok D., 2016. Variation in total phenolic compounds, anthocyanin and monoterpene content of ‘Muscat Hamburg’ table grape cultivar (V. vinifera L.) as affected by cluster thinning and early and late period basal leaf removal treatments. Erwerbs-Obstbau., 58, 241–246. [CrossRef] [Google Scholar]
  • Kumar S., Pandey A.K., 2013. Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013, 162750. [Google Scholar]
  • Liang N., Kitts D.D., 2016. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutr., 8, 16. [Google Scholar]
  • Marreiros C., 2013. O potencial de produção e comercialização de uvas “D. Maria” em Portugal. MSc Thesis, Universidade de Évora. [Google Scholar]
  • Mendes-Pinto M.M., Ferreira A.C.S., Oliveira M.B.P.P., Pinho P.G., 2004. Evaluation of some carotenoids in grapes by reversedand normal-phase liquid chromatography: a qualitative analysis. J. Agric. Food Chem., 52, 3182–3188. [CrossRef] [PubMed] [Google Scholar]
  • Mitić M.N., Souquet J.-M., Obradović M.V., Mitić S., 2012. Phytochemical profiles and antioxidant activities of Serbian table and wine grapes. Food Sci. Biotechnol., 21, 1619–1626. [CrossRef] [Google Scholar]
  • OIV, 2017. State of the vitiviniculture world market. (accessed 1 February 2018). [Google Scholar]
  • Oliveira D.A., Salvador A.A., Smânia A., Smânia E.F.A., Maraschin M., Ferreira S.R.S., 2013. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol., 164, 423–432. [CrossRef] [PubMed] [Google Scholar]
  • Philips M.M., Case R.J., Rimmer C.A., Sander L.C., Sharpless K.E., Wise S.A., Yen J.H., 2010. Determination of organic acids in Vaccinium berry standard reference materials. Anal. Bioanal. Chem., 398, 425–434. [CrossRef] [PubMed] [Google Scholar]
  • Radovanović B., Radovanović A., Souquet J., 2010. Phenolic profile and free radical-scavenging activity of cabernet Sauvignon wines of different geographical origins from Balkan region. J. Sci. Food Agric., 90, 2455–2461. [CrossRef] [PubMed] [Google Scholar]
  • Ras R.T., Zock P.L., Zebregs Y.E., Johnston N.R., Webb D.J., Draijer R., 2013. Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. Br. J. Nutr., 110, 2234–2241. [CrossRef] [PubMed] [Google Scholar]
  • Rasines-Perea Z., Teissedre P.-L., 2017. Grape polyphenols´ effects in human cardiovascular diseases and diabetes. Molecules, 22, 68. [CrossRef] [Google Scholar]
  • Remaily G.W., 1987. Diversity of North American species of Vitis. Plant Gen. Resour. Nwslt., 71, 25–30. [Google Scholar]
  • Rockenbach I.I., Gonzaga L.V., Rizelio V.M., Gonçalves A.E.S.S., Genovese M.I., Fett R., 2011. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res Int., 44, 897–901. [CrossRef] [Google Scholar]
  • Rolle L., Giacosa S., Gerbi V., Bertolino M., Novello V., 2013. Varietal comparison of the chemical, physical, and mechanical properties of five colored table grapes. Int. J. Food Prop., 16, 598–612. [CrossRef] [Google Scholar]
  • Nile S.H., Kim D.H., Keum Y.-S., 2015. Determination of anthocyanins content and antioxidant capacity of different grape varieties. Ciência Téc. Vitiv., 30, 60–68. [CrossRef] [EDP Sciences] [Google Scholar]
  • Siddhraju P., Becker K., 2003. Antioxidant properties of various solvents extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam) leaves. J. Agric. Food Chem., 51, 2144–2155. [CrossRef] [PubMed] [Google Scholar]
  • Sosa V., Moliné T., Somoza R., Paciucci R., Kondoh H.E., LLeonart M.E., 2013. Oxidative stress and cancer: an overview. Ageing Res. Rev., 12, 376–390. [CrossRef] [PubMed] [Google Scholar]
  • Topalovic A., Godjevac D., Perovic N., Trifunovic S., 2012. Comparative study of the phenolic composition of seeds from grapes cv Cardinal and Alphonse lavalleé during last month of ripening. Ital. J. Food Sci., 24, 159–166. [Google Scholar]
  • Topalovic A. Mikulic-Petkovsek M., 2010. Changes in sugars, organic acids and phenolics of grape berries of cultivar Cardinal during ripening. J. Food Agric Environ., 8, 223–227. [Google Scholar]
  • Vaisman N., Niv E., 2015. Daily consumption of red grape cell powder in a dietary dose improves cardiovascular parameters: A double blind, placebo-controlled, randomized study. Int. J. Food Sci. Nutr., 66, 342–349. [CrossRef] [PubMed] [Google Scholar]
  • Xia E.-Q., Deng G.-F., Guo Y.J., Li H.B., 2010. Biological activities of polyphenols from grapes. Int. J. Mol. Sci., 11, 622–646. [CrossRef] [PubMed] [Google Scholar]
  • Yang J., Martinson T.E., Liu R.H., 2009. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem., 116, 332–339. [CrossRef] [Google Scholar]
  • Yilmaz Y., Göksel Z., Erdoğan S.S., Öztürk A., Atak A., Özer C., 2015. Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grapes (Vitis vinifera L.) cultivars (4 common and 18 registered or candidate for resgistration). J. Food Process., 39, 1682–1691. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.