Open Access
Issue
Ciência Téc. Vitiv.
Volume 39, Number 1, 2024
Page(s) 30 - 50
DOI https://doi.org/10.1051/ctv/ctv2024390130
Published online 29 April 2024
  • ALABE., 2024. Informações PROVA-ALABE. Associação dos Laboratórios de Enologia. Available at: https://www.alabe.pt/pt/prova/info_pa.php (accessed on 29.01.2024) [Google Scholar]
  • Arias-Pérez I., Sáenz-Navajas M. P., de-la-Fuente-Blanco A., Ferreira V., Escudero A., 2021. Insights on the role of acetaldehyde and other aldehydes in the odour and tactile nasal perception of red wine. Food Chem., 361, 130081. [Google Scholar]
  • Australian Wine Research Institute, 2023. Wine flavours, faults and taints. Australian Wine Research Institute. Available at: https://www.awri.com.au/industry_support/winemaking_resources/sensory_assessment/recognition-of-wine-faults-and-taints/wine_faults/ (accessed on 30.10.2023) [Google Scholar]
  • Baigrie B., 2003. Taints and off-flavours in foods. 206 p. Woodhead Publishing, Cambridge. [Google Scholar]
  • Baldovini N., Filippi J.-J., 2017. Natural Fragrant Raw Materials. In: Springer Handbook of Odor. 11–12. Buettner A. (ed.), Springer International Publishing, New York. [Google Scholar]
  • Beeren C., 2018. Application of Descriptive Sensory Analysis to Food and Drink Products. In : In Descriptive Analysis in Sensory Evaluation. 609–646. Kemp S.E., Hort J., Hollowood T. (eds.), Wiley Blackwell, West Sussex. [Google Scholar]
  • Bower J.A., 2013. The Nature of Data and Their Collection. In : Statistical Methods for Food Science. 15–43. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Cardello A.V., Jaeger S.R., 2010. Hedonic measurement for product development: new methods for direct and indirect scaling. In: Consumer-Driven Innovation in Food and Personal Care Products. 135–174. Jaeger S. R., MacFie H. (eds.), Woodhead Publishing, Cambridge. [Google Scholar]
  • Daniel W.W., Cross C. L., 2018. Biostatistics: A Foundation for Analysis in the Health Sciences. 720 p. Wiley Blackwell. West Sussex. [Google Scholar]
  • EA, 2022. Accreditation for sensory testing laboratories. In: European co-operation for Accreditation, Laboratory Committee. (EA-4/09 G: 2022). European Accreditation, Utrecht. [Google Scholar]
  • Gomis-Bellmunt A., Claret A., Guerrero L., Pérez-Elortondo F.J., 2024. Sensory evaluation of Protected Designation of origin Wines: Development of olfactive descriptive profile and references. Food Res. Int., 176, 113828. [Google Scholar]
  • Goode J., 2018. Flawless: Understanding Faults in Wine. 240 p. University of California Press, Oakland. [Google Scholar]
  • Grainger K., 2021a. Brettanomyces (Dekkera) and Ethyl Phenols. In: Wine Faults and Flaws 117–170. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Grainger K., 2021b. Chloroanisoles, Bromoanisoles, and Halophenols. In: Wine Faults and Flaws. 57–116. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Grainger K., 2021c. Excessive Sulfur Dioxide, Volatile Sulfur Compounds, and Reduced Aromas. In: Wine Faults and Flaws. 218–256. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Grainger K., 2021d. Excessive Volatile Acidity and Ethyl Acetate. In: Wine Faults and Flaws. 257–285. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Grainger K. 2021e. Faults, Flaws, Off-Flavours, Taints, and Undesirable Compounds. In: Wine Faults and Flaws. 1–21. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Grainger K., 2021f. Lactic Acid Bacteria-Related Faults. In: Wine Faults and Flaws. 318–330. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Grainger K., 2021g. Oxidation, Premox, and Excessive Acetaldehyde. In: Wine Faults and Flaws. 171–217. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Grainger K., 2021h. Sundry Faults, Contaminants, Including Undesirable Compounds from a Health Perspective and Flaws Due to Poor Balance. In: Wine Faults and Flaws. 352–368. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Grainger K., 2021i. Wine Tasting. In: Wine Faults and Flaws. 22–56. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Hyldig G., 2010. Proficiency testing of sensory panels. In : Sensory Analysis for Food and Beverage Quality Control. 37–48. Kilcast D. (Ed.), Woodhead Publishing, Cambridge. [Google Scholar]
  • International Olive Council, 2018. Sensory analysis of olive oil: method of the organoleptic assessment of virgin olive oil. COI/T. 20/Doc. No 15/Rev. 10. [Google Scholar]
  • ISO 3591, 1977. Sensory analysis-Apparatus-Wine-tasting glass. https://www.iso.org/standard/9002.html [Google Scholar]
  • ISO 11136, 2014. Sensory analysis - Methodology - General guidance for conducting hedonic tests with consumers in a controlled area. https://www.iso.org/standard/50125.html [Google Scholar]
  • ISO/IEC 17025, 2017. General requirements for the competence of testing and calibration laboratories. https://www.iso.org/standard/66912.html [Google Scholar]
  • ISO 13528, 2022. Statistical methods for use in proficiency testing by interlaboratory comparison. https://www.iso.org/standard/78879.html [Google Scholar]
  • ISO/IEC 17043, 2023. Conformity assessment-General requirements for the competence of proficiency testing providers. https://www.iso.org/standard/80864.html [Google Scholar]
  • Kilcast D., 2010. Sensory Analysis for Food and Beverage Quality Control: A Practical Guide. 400p. Woodhead Publishing, Cambridge. [Google Scholar]
  • Lawless H.T., Heymann H., 2010. Sensory Evaluation of Food: Principles and Practices (2nd Edition). 596p. Springer, New York. [Google Scholar]
  • Martineau B., Acree T.E., Henick-Kling T., 1995. Effect of wine type on the detection threshold for diacetyl. Food Res. Int., 28, 139–143. [Google Scholar]
  • Mazzoni C., Tirard A., Boubetra B., 2022. Detection of Wine Alterations by Sensory Analysis: Overview of Results obtained from Interlaboratory Tests. MCAES, 2, 04–13. [Google Scholar]
  • McEwan J.A., 1999. Comparison of sensory panels: a ring trial. Food Qual. Prefer., 10, 161–171. [Google Scholar]
  • McEwan J.A., 2000a. Proficiency Testing for Sensory Profile Tests: Statistical Guidelines. Part 1. R&D Report No. 119. CCFRA. Chipping Campden, Gloucestershire. [Google Scholar]
  • McEwan J.A., 2000b. Proficiency Testing for Sensory Ranking Tests: Statistical Guidelines. Part 1. R&D Report No. 118. CCFRA. Chipping Campden, Gloucestershire. [Google Scholar]
  • McEwan J.A., 2001a. Proficiency Testing for Sensory Profile Tests: Statistical Guidelines. Part 2. R&D Report No. 127. CCFRA. Chipping Campden, Gloucestershire. [Google Scholar]
  • McEwan J.A., 2001b. Proficiency Testing for Sensory Ranking Tests: Statistical Guidelines. Part 2. R&D Report No. 126. CCFRA. Chipping Campden, Gloucestershire. [Google Scholar]
  • McEwan J.A., Heiniö R.L., Hunter E.A., Lea P., 2003. Proficiency testing for sensory ranking panels: measuring panel performance. Food Qual. Prefer., 14, 247–256. [Google Scholar]
  • Medel-Marabolí M., Romero J.L., Obreque-Slier E., Contreras A., Peña-Neira A., 2017. Effect of a commercial tannin on the sensorial temporality of astringency. Food Res. Int., 102, 341–347. [Google Scholar]
  • Meilgaard M.C., Civille G.V., Carr B.T., 2015. Sensory Evaluation Techniques (5 ed.). 589 p. CRC Press, Boca Raton. [Google Scholar]
  • Miranda A., Pereira V., Pontes M., Albuquerque F., Marques J.C., 2017. Acetic acid and ethyl acetate in Madeira wines: Evolution with ageing and assessment of the odour rejection threshold. Ciência Téc. Vitiv., 32, 1–11. [Google Scholar]
  • Murteira B., Ribeiro C.S., Silva J.A., Pimenta C., 2007. Introdução à estatística (2 ed.). 682 p. McGraw-Hill. Lisboa. [Google Scholar]
  • Naæs T., 1998. Detecting individual differences among assessors and differences among replicates in sensory profiling. Food Qual. Prefer., 9, 107–110. [Google Scholar]
  • Næs T., Brockhoff P.B., Tomic O., 2011. Statistics for sensory and consumer science. 283 p. Wiley-Blackwell, West Sussex. [Google Scholar]
  • Nakano B., 2023. A Guide to: Wine Faults. Available at: https://www.hawaiibevguide.com/wine-faults.html (accessed on 20.12.2023). [Google Scholar]
  • Pavez C., González-Muñoz B., O'Brien J.A., Laurie V.F., Osorio F., Núñez E., Vega R.E., Bordeu E., Brossard N., 2022. Red wine astringency: Correlations between chemical and sensory features. LWT, 154, 112656. [Google Scholar]
  • Pérez-Elortondo F. J., Zannoni M., 2021. Guidelines for sensory analysis of protected designation of origin food products and wines (1 ed.). Editorial Acribia S.A. Available at : https://www.e3sensory.eu/wp-content/uploads/2022/05/Guidelines-for-sensory-analysis_Seguridad_Digital.pdf (accessed on 20.12.2023). [Google Scholar]
  • Pimentel T.C., Gomes da Cruz A., Deliza R., 2016. Sensory Evaluation: Sensory Rating and Scoring Methods. In: Encyclopedia of Food and Health, 744–749. Caballero B, Finglas P.M, Toldra F. (eds.) Elsevier Academic Press, Oxford. [Google Scholar]
  • Pinto M.M., Barros P., 2015. Ensaios de aptidão sensorial. In: Química Enológica - métodos analíticos. 497–505. Curvelo-Garcia A.S., Barros P. (eds.), Publindústria Edições Técnicas, Agrobook. [Google Scholar]
  • Rossi F., 2001. Assessing sensory panelist performance using repeatability and reproducibility measures. Food Qual. Prefer., 12, 467–479. [Google Scholar]
  • Saxby M.J., 1996. Food taints and off-flavours (2 ed.). 326 p. Springer Science & Business Media, Glasgow. [Google Scholar]
  • Sell C.S., 2006. The Chemistry of Fragrances: From Perfumer to Consumer (2 ed.). 321 p. Royal Society of Chemistry, Cambridge. [Google Scholar]
  • Spence C., 2019. Perceptual learning in the chemical senses: A review. Food Res. Int., 123, 746–761. [Google Scholar]
  • Stapleton L., 2021. Data Presentation for QC Programs. In : The Role of Sensory Analysis in Quality Control (2nd ed.) 55–67. Ojeh O. (ed.), ASTM International, West Conshohocken, PA. [Google Scholar]
  • Stone H., Sidel J.L., 2004. Sensory Evaluation Practices (3rd ed.). 365 p. Elsevier Academic Press, Oxford. [Google Scholar]
  • Takeuchi H., Kato H., Kurahashi T., 2013. 2,4,6-Trichloroanisole is a potent suppressor of olfactory signal transduction. PNAS, 110, 16235–16240. [Google Scholar]
  • Tarasov A., Cabral M., Loisel C., Lopes P., Schuessler C., Jung R., 2022. State-of-the-Art Knowledge about 2,4,6-Trichloroanisole (TCA) and Strategies to Avoid Cork Taint in Wine. In : Grapes and Wine. 324–353. Morata A., Loira I., González C. (eds.), IntechOpen, London. [Google Scholar]
  • Tempère S., Cuzange E., Malak J., Bougeant J.-C., Revel G., Sicard G., 2011. The Training Level of Experts Influences their Detection Thresholds for Key Wine Compounds. Chem. Percept., 4, 99–115. [Google Scholar]
  • Tempère S., Cuzange E., Schaaper M.-H., Lescar R., Revel G., Sicard G., 2014. “Brett character” in wine: Is there a consensus among professional assessors? A perceptual and conceptual approach. Food Qual. Prefer., 34, 29–36. [Google Scholar]
  • Thompson M., Ellison S.L.R., Wood R., 2006. The International Harmonized Protocol for the proficiency testing of analytical chemistry laboratories: (IUPAC technical report). Pure Appl. Chem., 78, 145–196. [Google Scholar]
  • Thompson M., Wood R., 1993. The international harmonized protocol for the proficiency testing of (chemical) analytical laboratories (Technical Report). Pure Appl. Chem., 65, 2123–2144. [Google Scholar]
  • Tomic O., Luciano G., Nilsen A., Hyldig G., Lorensen K., Næs T., 2010. Analysing sensory panel performance in a proficiency test using the PanelCheck software. Eur. Food Res. Technol., 230, 497–511. [Google Scholar]
  • Wang M., Septier C., Brignot H., Martin C., Canon F., Feron G., 2022. Astringency Sensitivity to Tannic Acid: Effect of Ageing and Saliva. Molecules, 27, 1617. [Google Scholar]
  • Wolf M.B., 2020. Sensory Testing Methods (3 ed.). 157 p. ASTM International, West Conshohocken, PA. [Google Scholar]
  • Wood R., Nilsson A., Wallin H., 1998. Role of Proficiency Testing in the Assessment of Laboratory Quality. In : Quality in the Food Analysis Laboratory. 172–201. Royal Society of Chemistry, Cambridge. [Google Scholar]
  • Xiang Y., Graeber T., Enke B., Gershman S.J., 2021. Confidence and central tendency in perceptual judgment. Atten Percept Psycho, 83, 3024– [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.