Open Access
Issue
Ciência Téc. Vitiv.
Volume 39, Number 1, 2024
Page(s) 51 - 63
DOI https://doi.org/10.1051/ctv/ctv202439051
Published online 17 July 2024
  • Agnolucci M., Avio L., Pepe A., Turrini A., Cristani C., Bonini P., Cirino V., Colosimo F., Ruzzi M., Giovannetti M., 2019. Bacteria associated with a commercial mycorrhizal inoculum: Community composition and multifunctional activity as assessed by Illumina sequencing and culturedependent tools. Front. Plant Sci., 9, 1956. [CrossRef] [Google Scholar]
  • Aguilera P., Ortiz N., Becerra N., Turrini A., Gaínza-Cortés F., Silva-Flores P., Aguilar-Paredes A., Romero J.K., Jorquera-Fontena E., Mora M. de L.L., Borie F., 2022. Application of arbuscular mycorrhizal fungi in vineyards: water and biotic stress under a climate change scenario: new challenge for chilean grapevine crop. Front. Microbiol., 13, 826571. [CrossRef] [Google Scholar]
  • Baraza E., Bota J., Romero-Munar A., Nogales B., 2019. Application of the Biolog™ ECO-plate technique for the study of the physiological profile of microbial communities in agricultural land. Ecosistemas, 28, 46–53. [CrossRef] [Google Scholar]
  • Baraza E., Hmida I., Ribas M.A., Moreno-Díaz R., Bota J., 2023. The use of arbuscular mycorrhizal inoculum in viticulture is not always positive: a systematic review. Vitis, 62, 183–192. [Google Scholar]
  • Basiru S., Mwanza H.P., Hijri M., 2021. Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms, 9, 81. [Google Scholar]
  • Bates D., Mächler M., Bolker B., Walker S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw., 67, 1–48. [CrossRef] [Google Scholar]
  • Baum C., El-Tohamy W., Gruda N., 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic., 187, 131–141. [CrossRef] [Google Scholar]
  • Berruti A., Lumini E., Balestrini R., Bianciotto V., 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol., 6, 1559. [CrossRef] [Google Scholar]
  • Brunetto, G., Marques, A. C., Trentin, E., Sete, P. B., Soares, C. R., Ferreira, P. A., de Melo G.W.B., Zalamena, J., da Silva, L.O.S., Marchezan, C., da Silva, I. C. B., dos Santos J. P. J., & Morsch, L., 2023. Arbuscular mycorrhizal fungi inoculation as strategy to mitigate copper toxicity in young field-grown vines. Ciência e Téc. Vitiv., 38(1), 60–66. [Google Scholar]
  • Camprubí A., Estaún V., Nogales A., García-Figueres F., Pitet M., Calvet C., 2008. Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza, 18, 211–216. [CrossRef] [PubMed] [Google Scholar]
  • Carbone M.J., Alaniz S., Mondino P., Gelabert M., Eichmeier A., Tekielska D., Bujanda R., Gramaje D., 2021. Drought influences fungal community dynamics in the grapevine rhizosphere and root microbiome. J. Fungi, 7, 686. [CrossRef] [Google Scholar]
  • Cardinale M., Minervini F., De Angelis M., Papadia P., Migoni D., Dimaglie M., Dinu D. G., Quarta C., Selleri F., Caccioppola A., Vacca M., Rustioni L., 2022. Vineyard establishment under exacerbated summer stress: effects of mycorrhization on rootstock agronomical parameters, leaf element composition and root-associated bacterial microbiota. Plant Soil, 478, 613–634. [CrossRef] [Google Scholar]
  • Ceballos I., Ruiz M., Fernández C., Peña R., Rodríguez A., Sanders I. R., 2013. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS ONE, 8, e70633. [CrossRef] [PubMed] [Google Scholar]
  • Chen M., Arato M., Borghi L., Nouri E., Reinhardt D., 2018. Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front. Plant Sci., 9, 1270. [CrossRef] [Google Scholar]
  • Darriaut R., Antonielli L., Martins G., Ballestra P., Vivin P., Marguerit E., Mitter B., Masneuf-Pomarède I., Compant S., Ollat N., Lauvergeat V., 2022. Soil composition and rootstock genotype drive the root associated microbial communities in young grapevines. Front. Microbiol., 13, 1031064. [CrossRef] [Google Scholar]
  • DataM Intelligence, 2023. Global Organic Wine Market - 2023-2030. 190 p. DataM Intelligence 4Market Research LLP, Hyderabad, India. [Google Scholar]
  • Dhankhar N., Kumar J., 2023. Impact of increasing pesticides and fertilizers on human health: A review. Mater. Today: Proc. S2214785323018382 [Google Scholar]
  • Eftekhari M., Alizadeh M., Mashayekhi K., Asghari H., Kamkar B., 2010. Integration of arbuscular mycorrhizal fungi to grape vine (Vitis vinifera L.) in nursery stage. J. Adv. Lab., 1(2), 102–111. [Google Scholar]
  • Faye A., Dalpé Y., Ndung’u-Magiroi K., Jefwa J., Ndoye I., Diouf M., Lesueur D., 2013. Evaluation of commercial arbuscular mycorrhizal inoculants. Can. J. Plant Sci., 93, 1201–1208. [CrossRef] [Google Scholar]
  • Frew A., 2021. Contrasting effects of commercial and native arbuscular mycorrhizal fungal inoculants on plant biomass allocation, nutrients, and phenolics. Plants People Planet, 3, 536–540. [CrossRef] [Google Scholar]
  • Gabriele M., Gerardi C., Longo V., Lucejko J., Degano I., Pucci L., Domenici V., 2016. The impact of mycorrhizal fungi on Sangiovese red wine production: Phenolic compounds and antioxidant properties. LWT - Food Sci. Technol., 72, 310–316. [CrossRef] [Google Scholar]
  • Ganugi P., Caffi T., Gabrielli M., Secomandi E., Fiorini A., Zhang L., Bellotti G., Puglisi E., Fittipaldi M.B., Asinari F., Tabaglio V., Trevisan M., Lucini L., 2023. A three-year application of different mycorrhiza-based plant biostimulants distinctively modulates photosynthetic performance, leaf metabolism and fruit quality in grape (Vitis vinifera L.). Front. Plant Sci., 14, 1236199. [CrossRef] [Google Scholar]
  • Gerdemann, J. W. 1968. Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopathol., 6, 397–418. [CrossRef] [Google Scholar]
  • Goicoechea N., Jiménez L., Prieto E., Gogorcena Y., Pascual I., Irigoyen J.J., Antolín M.C., 2021. Assessment of nutritional and quality properties of leaves and musts in three local spanish grapevine varieties undergoing controlled climate change scenarios. Plants, 10, 1198. [CrossRef] [PubMed] [Google Scholar]
  • Goicoechea N., Torres N., Garmendia I., Hilbert G., Antolín M.C., 2023. Mycorrhizal symbiosis improve fruit quality in Tempranillo grapevine sensitive to low-moderate warming. Sci. Hortic., 315, 111993. [CrossRef] [Google Scholar]
  • Holland T.C., Hart M.M., Bogdanoff C., Bowen P., 2018. Response of grapevine rootstocks to soil inocula from different sources. Am. J. Enol. Vitic., 69, 94–100. [CrossRef] [Google Scholar]
  • Jacobs-Hoffman, I., & Hills, P. N. (2021). Effects of the commercial biostimulant BC204 on the rhizosphere microbial community of Solanum lycopersicum L. South African Journal of Botany, 143, 52–60. [CrossRef] [Google Scholar]
  • Johnson N.C., Graham J.H., Smith F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol., 135, 575–585. [CrossRef] [Google Scholar]
  • Kabir Z., O’Halloran I. P., Fyles J. W., Hamel C., 1997. Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: Hyphal density and mycorrhizal root colonization. Plant Soil, 192, 285–293. [CrossRef] [Google Scholar]
  • Karoglan M., Radić T., Anić M., Andabaka Ž., Stupić D., Tomaz I., Mesić J., Karažija T., Petek M., Lazarević B., Poljak M., Osrečak M., 2021. Mycorrhizal fungi enhance yield and berry chemical composition of in field grown “cabernet sauvignon” grapevines (V. vinifera L.). Agriculture, 11, 615. [CrossRef] [Google Scholar]
  • Landi L., Foglia R., Murolo S., Romanazzi G., 2021. The mycorrizal status in vineyards affected by esca. J. Fungi, 7, 869. [CrossRef] [Google Scholar]
  • Lenth R., Buerkner P., Herve M., Love J., Riebl H., Singmann H., 2020. emmeans: Estimated Marginal Means, aka Least- Squares Means. R package version 1.5.2. [Google Scholar]
  • Linderman R.G., Davis E. A., 2001. Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. Am. J. Enol. Vitic., 52, 8–11. [CrossRef] [Google Scholar]
  • Mäder P., Edenhofer S., Boller T., Wiemken A., Niggli U., 2000. Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol. Fertil. Soils., 31, 150–156. [CrossRef] [Google Scholar]
  • McGonigle T.P., Miller M.H., Evans D.G., Fairchild G.L., Swan J.A., 1990. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol., 115, 495–501. [CrossRef] [PubMed] [Google Scholar]
  • Mortimer P.E., Archer E., Valentine A.J., 2005. Mycorrhizal C costs and nutritional benefits in developing grapevines. Mycorrhiza, 15, 159–165. [CrossRef] [PubMed] [Google Scholar]
  • Moukarzel R., Ridgway H.J., Guerin-Laguette A., Jones E.E., 2021. Grapevine rootstocks drive the community structure of arbuscular mycorrhizal fungi in New Zealand vineyards. J. Appl. Microbiol., 131, 2941–2956. [CrossRef] [PubMed] [Google Scholar]
  • Moukarzel R., Ridgway H.J., Waller L., Guerin-Laguette A., Cripps-Guazzone N., Jones E.E., 2022. Soil arbuscular mycorrhizal fungal communities differentially affect growth and nutrient uptake by grapevine rootstocks. Microb. Ecol., 86, 1035–1049. [Google Scholar]
  • Nicolás E., Maestre-Valero J.F., Alarcón J.J., Pedrero F., Vicente-Sánchez J., Bernabé A., Gómez-Montiel J., Hernández J.A., Fernández F., 2015. Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. J. Agric. Sci., 153, 1084–1096. [CrossRef] [Google Scholar]
  • Nogales A., Luque J., Estaún V., Camprubí A., Garcia-Figueres F., Calvet C., 2009. Differential growth of mycorrhizal field-inoculated grapevine rootstocks in two replant soils. Am. J. Enol. Vitic., 60, 484–489. [CrossRef] [Google Scholar]
  • Nogales A., Santos E.S., Abreu M.M., Arán D., Victorino G., Pereira H.S., Lopes C.M., Viegas W., 2019. Mycorrhizal inoculation differentially affects grapevine’s performance in copper contaminated and non-contaminated soils. Front. Plant Sci., 9, 1906. [CrossRef] [Google Scholar]
  • Nogales A., Rottier E., Campos C., Victorino G., Costa J.M., Coito J.L., Pereira H.S., Viegas W., Lopes C., 2021. The effects of field inoculation of arbuscular mycorrhizal fungi through rye donor plants on grapevine performance and soil properties. Agric. Ecosyst. Environ., 313, 107369. [CrossRef] [Google Scholar]
  • Paul Schreiner R., 2007. Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of “Pinot noir” (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl. Soil Ecol., 36, 205–215. [CrossRef] [Google Scholar]
  • Pellegrino E., Öpik M., Bonari E., Ercoli L., 2015. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biol. Biochem., 84, 210–217. [CrossRef] [Google Scholar]
  • Phillips J.M., Hayman D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc., 55, 158–161. [CrossRef] [Google Scholar]
  • Popescu G.C., 2016. Arbuscular mycorrhizal fungi-an essential tool to sustainable vineyard development: a review. Curr. Trends Nat. Sci., 5, 107–116. [Google Scholar]
  • R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing version 4.2.1. [Google Scholar]
  • Rienth M., Torregrosa L., Sarah G., Ardisson M., Brillouet J. M., Romieu C., 2016. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biol., 16, 164. [CrossRef] [Google Scholar]
  • Rosa D., Pogiatzis A., Bowen P., Kokkoris V., Richards A., Holland T., Hart M., 2020. Performance and establishment of a commercial mycorrhizal inoculant in viticulture. Agriculture, 10, 539. [CrossRef] [Google Scholar]
  • Salomon M.J., Demarmels R., Watts-Williams S.J., McLaughlin M.J., Kafle A., Ketelsen C., Soupir A., Bücking H., Cavagnaro T.R., van der Heijden M.G.A., 2022. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol., 169, 104225. [CrossRef] [Google Scholar]
  • Schreiner R. P., Tarara J. M., Smithyman R. P., 2007. Deficit irrigation promotes arbuscular colonization of fine roots by mycorrhizal fungi in grapevines (Vitis vinifera L.) in an arid climate. Mycorrhiza, 17, 551–562. [CrossRef] [PubMed] [Google Scholar]
  • Sinclair G., Charest C., Dalpé Y., Khanizadeh S., 2014. Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agric. Food Sci., 23, 146–158. [CrossRef] [Google Scholar]
  • Smith, S.E., Read, D.J. 2008. Mycorrhizal Symbiosis. Academic Press. [Google Scholar]
  • Smith S.E., Facelli E., Pope S., Smith F.A., 2010. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil, 326, 3–20. [CrossRef] [Google Scholar]
  • Soil Science Division Staff, 1993. Soil Survey Manual (No. 18). Gov. Printing Office. US Deparment of Agriculture. [Google Scholar]
  • Sudheer S., Johny L., Srivastava S., Adholeya A., 2023. The trade-in-trade: multifunctionalities, current market and challenges for arbuscular mycorrhizal fungal inoculants. Symbiosis, 89, 259–272. [CrossRef] [Google Scholar]
  • Tarbell T.J., Koske R.E., 2007. Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza, 18, 51–56. [CrossRef] [PubMed] [Google Scholar]
  • The Business Research Company, 2023. Biofertilizers Global Market Briefing 2022. The Business Research Company, London. [Google Scholar]
  • Thomsen C., Loverock L., Kokkoris V., Holland T., Bowen P.A., Hart M., 2021. Commercial arbuscular mycorrhizal fungal inoculant failed to establish in a vineyard despite priority advantage. PeerJ, 9, e11119. [CrossRef] [PubMed] [Google Scholar]
  • Torres N., Goicoechea N., Carmen Antolín M., 2018. Influence of irrigation strategy and mycorrhizal inoculation on fruit quality in different clones of Tempranillo grown under elevated temperatures. Agric. Water Manag., 202, 285–298. [CrossRef] [Google Scholar]
  • Torres N., Goicoechea N., Morales F., Antolín M.C., 2016. Berry quality and antioxidant properties in Vitis vinifera cv. Tempranillo as affected by clonal variability, mycorrhizal inoculation and temperature. Crop Pasture Sci., 67, 961–977. [CrossRef] [Google Scholar]
  • Torres N., Yu R., Kurtural S.K., 2021. Arbuscular mycrorrhizal fungi inoculation and applied water amounts modulate the response of young grapevines to mild water stress in a hyper-arid season. Front. Plant Sci., 11, 622209. [CrossRef] [Google Scholar]
  • Trouvelot S., Bonneau L., Redecker D., van Tuinen D., Adrian M., Wipf D., 2015. Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron. Sustain. Dev., 35, 1449–1467. [CrossRef] [Google Scholar]
  • Valentine A.J., Mortimer P.E., Lintnaar M., Borgo R., 2006. Drought responses of arbuscular mycorrhizal grapevines. Symbiosis, 41, 127–133. [Google Scholar]
  • van Jaarsveld W.J., Halleen F., Bester M.C., Pierron R.J.G., Stempien E., Mostert L., 2021. Investigation of Trichoderma species colonization of nursery grapevines for improved management of black foot disease. Pest Manag. Sci., 77, 397–405. [CrossRef] [PubMed] [Google Scholar]
  • Velásquez A., Valenzuela M., Carvajal M., Fiaschi G., Avio L., Giovannetti M., D’Onofrio C., Seeger M., 2020. The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiol. Biochem., 155, 437–443. [CrossRef] [Google Scholar]
  • Verbruggen E., van der Heijden M.G., Rillig M.C., Kiers E.T., 2013. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol., 197, 1104–1109. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.