Open Access
Review
Issue
Ciência Téc. Vitiv.
Volume 38, Number 2, 2023
Page(s) 128 - 151
DOI https://doi.org/10.1051/ctv/ctv20233802128
Published online 25 September 2023
  • Alcalde-Eon C., Escribano-Bailón M.T., Santos-Buelga C., Rivas-Gonzalo J.C., 2006. Changes in the detailed pigment composition of red wine during maturity and ageing: A comprehensive study. Anal. Chim. Acta, 563, 238–254. [CrossRef] [Google Scholar]
  • Alexandre H., 2022. Aging on lees and their alternatives: Impact on wine. In: Managing wine quality. 213–224. Reynolds A.G. (ed.), Elsevier, Cambridge. [CrossRef] [Google Scholar]
  • Anli R.E., Cavuldak Ö.A., 2013. A review of microoxygenation application in wine. J. Inst. Brew., 118, 268–385. [Google Scholar]
  • Araújo P., Fernandes A., De Freitas V., Oliveira J., 2017. A new chemical pathway yielding A-type vitisins in red wines. Int. J. Mol. Sci., 18, 762. [CrossRef] [Google Scholar]
  • Areshian G.E., Gasparyan B., Avetisyan P.S., Pinhasi R., Wilkinson K., Smith A., 2012. The chalcolithic of the Near East and south-eastern Europe: discoveries and new perspectives from the cave complex Areni-1, Armenia. Antiquity, 86, 115–130. [CrossRef] [Google Scholar]
  • Asadi I., Shafigh P., Hassan Z.F.B.A., Mahyuddin N.B., 2018. Thermal conductivity of concrete–A review. J. Build. Eng., 20, 81–93. [CrossRef] [Google Scholar]
  • Atanasova V., Fulcrand H., Cheynier V., Moutounet M., 2002. Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal. Chim. Acta, 458, 15–27. [CrossRef] [Google Scholar]
  • Baiano A., Mentana A., Quinto M., Centonze D., Longobardi F., Ventrella A., 2015. The effect of in-amphorae aging on oenological parameters, phenolic profile and volatile composition of Minutolo white wine. Food Res. Int., 74, 294–305. [CrossRef] [Google Scholar]
  • Barata A., Laureano P., D’Antuono I., Martorell P., Stender H., Malfeito-Ferreira M., 2013. Enumeration and identification of 4-ethylphenol producing yeasts recovered from the wood of wine ageing barriques after different sanitation treatments. J. Food Res., 2, 140. [CrossRef] [Google Scholar]
  • Benderschi O., 2020. Study on Georgian winemaking. Focus on Qvevri wines. 66 p. Msc. Thesis, Instituto Superior de Agronomia, Universidade de Lisboa. [Google Scholar]
  • Billiard R., 1913. La vigne dans l’antiquité. Rev. des Études Anciennes, 16, 375–376. [Google Scholar]
  • Blake A., Kotseridis Y., Brindle I. D., Inglis D., Pickering, G. J., 2010. Effect of light and temperature on 3-alkyl-2-methoxypyrazine concentration and other impact odourants of Riesling and Cabernet Franc wine during bottle ageing. Food Chem., 119, 935–944. [CrossRef] [Google Scholar]
  • Boidron J.N., Chatonnet P., Pons M., 1988. Influence du bois sur certaines substances odorantes des vins. Oeno One, 22, 275–94. [CrossRef] [Google Scholar]
  • Boulton R., 1979. The heat transfer characteristics of wine fermenters. Am. J. Enol. Vitic., 30, 152–6. [CrossRef] [Google Scholar]
  • Boulton R., 2001. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic., 52, 67–87. [CrossRef] [Google Scholar]
  • Boulton R.B., Singleton V.L., Bisson L.F., Kunkee R.E., 1999. The maturation and aging of wines. In: Principles and practices of winemaking. 382–426. Springer, Boston. [CrossRef] [Google Scholar]
  • Brossaud F., Cheynier V., Noble A.C., 2001. Bitterness and astringency of grape and wine polyphenols. Aust. J. Grape Wine Res., 7, 33–39. [Google Scholar]
  • Brouillard R., George F., Fougerousse A., 1997. Polyphenols produced during red wine ageing. Biofactors, 6, 403–10. [CrossRef] [PubMed] [Google Scholar]
  • Brown R.C., Sefton M.A., Taylor D.K, Elsey G.M., 2006. An odour detection threshold determination of all four possible stereoisomers of oak lactone in a white and a red wine. Aust. J. Grape Wine Res., 12, 115–8. [CrossRef] [Google Scholar]
  • Byrne J., Saywell L.G., Cruess W.V., 1937. The iron content of grapes and wine. Ind. & Eng. Chem. Anal. Ed., 9, 83–4. [CrossRef] [Google Scholar]
  • Cabrera-Vique C., Teissedre P.L., Cabanis M.T., 1997. Determination and levels of chromium in French wine and grapes by graphite furnace atomic absorption spectrometry. J. Agric. Food Chem., 45, 1808–1811. [CrossRef] [Google Scholar]
  • Cabrita M.J., Martins N., Barrulas P., Garcia R., Dias CB., Pérez-Álvarez E.P., 2018. Multi-element composition of red, white and palhete amphora wines from Alentejo by ICPMS. Food Control, 92, 80–85. [CrossRef] [Google Scholar]
  • Cano-López M., López-Roca J.M., Pardo-Mínguez F., Gómez-Plaza E., 2010. Oak barrel maturation vs. micro-oxygenation: effect on the formation of anthocyanin-derived pigments and wine color. Food Chem., 119, 191–195. [CrossRef] [Google Scholar]
  • Carpena M., Pereira A.G., Prieto M.A., Simal-Gandara J., 2020. Wine aging technology: Fundamental role of wood barrels. Foods, 9, 1160. [CrossRef] [PubMed] [Google Scholar]
  • Carroll D., Starkey H.C., 1971. Reactivity of clay minerals with acids and alkalies. Clay Miner., 19, 321–33. [CrossRef] [Google Scholar]
  • Castellari M., Piermattei B., Arfelli G., Amati A., 2001. Influence of aging conditions on the quality of red Sangiovese wine. J. Agric. Food Chem., 49, 3672–6. [CrossRef] [PubMed] [Google Scholar]
  • Castellari M., Simonato B., Tornielli G.B., Spinelli P., Ferrarini R., 2004. Effects of different enological treatments on dissolved oxygen in wines. Ital. J. Food Sci., 16, 387–396. [Google Scholar]
  • Catarino S., Curvelo-Garcia A.S., Bruno de Sousa R., 2008. Revisão: Elementos contaminantes nos vinhos. Ciência Téc. Vitiv., 23 (1), 3–19. [Google Scholar]
  • Çavuş V., Şahin S., Esteves B., Ayata U., 2019. Determination of thermal conductivity properties in some wood species obtained from Turkey. Bioresources, 14, 6709–6715. [CrossRef] [Google Scholar]
  • Charnock H.M., Cairns G., Pickering G.J., Kemp B.S., 2022. Production method and wine style influence metal profiles in sparkling wines. Am. J. Enol. Vit., 73, 170–182. [CrossRef] [Google Scholar]
  • Chatonnet P., 1991. Incidence du bois de chêne sur la composition chimique et les qualités organoleptiques des vins. 224 p. PhD thesis, Univ Bordeaux II. [Google Scholar]
  • Chatonnet P., 1992. Les composés aromatiques du bois de chêne cédés aux vins. Influence des opérations de chauffe en tonnellerie. In: Le bois et la qualité des vins des eaux-de-vie. 81–91. Vigne et Vin Publ. Intern., Bordeaux. [Google Scholar]
  • Chatonnet P., Boidron J., Dubourdieu D., 1993. Influence des conditions d’élevage et de sulfitage des vins rouges en barriques sur le teneur en acide acétique et en ethyl-phenols. J. Int. Sci. Vigne Vin, 27, 277–298. [Google Scholar]
  • Chatonnet, P., Boutou, S., Plana, A., 2014. Contamination of wines and spirits by phthalates: types of contaminants present, contamination sources and means of prevention. Food Addit. Contam., 31, 1605–1615. [CrossRef] [PubMed] [Google Scholar]
  • Chira K., Teissedre P.-L., 2015. Chemical and sensory evaluation of wine matured in oak barrel: Effect of oak species involved and toasting process. Eur. Food Res. Technol., 240, 533–47. [CrossRef] [Google Scholar]
  • Chira K., Schmauch G., Saucier C., Fabre S., Teissedre, P. L., 2009. Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from Bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007). J. Agric. Food Chem., 57, 545–553. [CrossRef] [PubMed] [Google Scholar]
  • Chira K., Jourdes M., Teissedre P.-L., 2012. Cabernet sauvignon red wine astringency quality control by tannin characterization and polymerization during storage. Eur. Food Res. Technol., 234, 253–261. [CrossRef] [Google Scholar]
  • Coelho E., Teixeira J.A., Domingues L., Tavares T., Oliveira J.M., 2019. Factors affecting extraction of adsorbed wine volatile compounds and wood extractives from used oak wood. Food Chem., 295, 156–64. [CrossRef] [Google Scholar]
  • Cooper D., 2004. A history of steel tank structural design. Wine Bus Mon. Available at: https://www.winebusiness.com/wbm/?go=getArticleSignIn&dataId=32887 (accessed 13/06/2022). [Google Scholar]
  • Cutzach I., Chatonnet P., Henry R., Dubourdieu D., 1997. Identification of volatile compounds with a “toasty” aroma in heated oak used in barrel making. J. Agric. Food Chem., 45, 2217–24. [CrossRef] [Google Scholar]
  • Dallas C., Ricardo-da-Silva J.M., Laureano O., 1995. Degradation of oligomeric procyanidins and anthocyanins in a Tinta Roriz red wine during maturation. Vitis, 34, 51–6. [Google Scholar]
  • Dallas C., Hipólito-Reis P., Ricardo-da-Silva J.M., Laureano, O., 2003. Influence of acetaldehyde, pH, and temperature on transformation of procyanidins in model wine solutions. Am. J. Enol Vitic., 54, 119–124. [CrossRef] [Google Scholar]
  • Danilewicz J.C., 2003. Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: central role of iron and copper. Am. J. Enol. Vitic., 54, 73–85. [CrossRef] [Google Scholar]
  • Danilewicz J.C., Seccombe J.T., Whelan J., 2008. Mechanism of interaction of polyphenols, oxygen, and sulfur dioxide in model wine and wine. Am. J. Enol. Vitic., 59, 128–36. [CrossRef] [Google Scholar]
  • Davis J.R., 1994. ASM specialty handbook. Stainless steels. 521 p., ASM International. [Google Scholar]
  • de Freitas V.A.P., Mateus N., 2010. Updating wine pigments. In: Recent advances in polyphenol research. 59–89. Wiley-Blackwell, Hoboken. [CrossRef] [Google Scholar]
  • de Freitas V., Mateus N., 2011. Formation of pyranoanthocyanins in red wines: A new and diverse class of anthocyanin derivatives. Anal. Bioanal. Chem., 401, 1467–1477. [Google Scholar]
  • del Alamo-Sanza M., Nevares I., 2014. Recent advances in the evaluation of the oxygen transfer rate in oak barrels. J. Agric. Food Chem., 62, 8892–8899. [CrossRef] [PubMed] [Google Scholar]
  • del Alamo-Sanza M., Nevares I., 2018. Oak wine barrel as an active vessel: A critical review of past and current knowledge. Crit. Rev. Food Sci., 58, 2711–2726. [CrossRef] [PubMed] [Google Scholar]
  • del Alamo‐Sanza M., Laurie V.F, Nevares I., 2015. Wine evolution and spatial distribution of oxygen during storage in high‐density polyethylene tanks. J. Sci. Food Agric., 95, 1313–1320. [CrossRef] [Google Scholar]
  • del Alamo-Sanza M., Cárcel L.M., Nevares I., 2017. Characterization of the oxygen transmission rate of oak wood species used in cooperage. J. Agric. Food Chem., 65, 648–55. [CrossRef] [PubMed] [Google Scholar]
  • del Carlo M., Pepe A., Sacchetti G., Compagnone D., Mastrocola D., Cichelli A., 2008. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography–mass spectrometry. Food Chem., 111, 771–777. [CrossRef] [Google Scholar]
  • del Carmen Llaudy M., Canals R., González-Manzano S., Canals J.M., Santos-Buelga C., Zamora F., 2006. Influence of micro-oxygenation treatment before oak aging on phenolic compounds composition, astringency, and color of red wine. J. Agric. Food Chem., 54, 4246–4252. [CrossRef] [PubMed] [Google Scholar]
  • Dias D.A., Smith T.A., Ghiggino K.P., Scollary G.R., 2012. The role of light, temperature and wine bottle colour on pigment enhancement in white wine. Food Chem., 135, 2934–2941. [CrossRef] [Google Scholar]
  • Díaz C., Laurie V.F., Molina A.M., Bücking M., Fischer R., 2013. Characterization of selected organic and mineral components of qvevri wines. Am. J. Enol. Vitic., 64, 532–537. [CrossRef] [Google Scholar]
  • du Toit W.J., Lisjak K., Marais J., du Toit M., 2006a. The effect of micro-oxygenation on the phenolic composition, quality and aerobic wine-spoilage microorganisms of different South African red wines. S. Afr. J. Enol. Vitic., 27, 57–67. [Google Scholar]
  • du Toit W.J., Marais J., Pretorius I.S., du Toit M., 2006b. Oxygen in must and wine: A review. S. Afr. J. Enol. Vitic., 27, 76–94. [Google Scholar]
  • Dumitriu G.D., de Lerma N.L., Zamfir C.I., Cotea V.V., Peinado RA., 2017. Volatile and phenolic composition of red wines subjected to aging in oak cask of different toast degree during two periods of time. LWT, 86, 643–651. [CrossRef] [Google Scholar]
  • Elias R.J., Andersen M.L., Skibsted L.H., Waterhouse A.L., 2009. Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping. J. Agric. Food Chem., 57, 4359–4365. [CrossRef] [PubMed] [Google Scholar]
  • Engineeringtoolbox. https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html (accessed 08/08/2022) [Google Scholar]
  • Es-Safi N.E., Fulcrand H., Cheynier V., Moutounet M., 1999. Studies on the acetaldehyde-induced condensation of (−)-epicatechin and malvidin 3-O-glucoside in a model solution system. J. Agric. Food Chem., 47, 2096–2102. [CrossRef] [PubMed] [Google Scholar]
  • Escot S., Feuillat M., Dulau L., Charpentier C., 2001. Release of polysaccharides by yeasts and the influence of released polysaccharides on colour stability and wine astringency. Aust. J. Grape Wine R., 7, 153–159. [CrossRef] [Google Scholar]
  • Escribano-Bailón M.T., Julián C., Rivas-Gonzalo., Garcia-Estévez I., 2019. Wine colour and stability. In: Red Wine Technology. 195–203. Morata A. (ed.), Elsevier, London. [CrossRef] [Google Scholar]
  • Fengel D., Wegener G., 1989. Wood. Chemistry, ultrastructure, reactions, 612 p. Walter de Gruyter, Berlin. [Google Scholar]
  • Fernández de Simón B., Muiño I., Cadahia E., 2010. Characterization of volatile constituents in commercial oak wood chips. J. Agric. Food Chem., 58, 9587–9596. [CrossRef] [PubMed] [Google Scholar]
  • Fors S., 1983. Sensory properties of volatile Maillard reaction products and related compounds. In: The Maillard reaction in foods and nutrition. 185–286. ACS Symposium Series, vol. 215, American Chemical Society, Washington. [CrossRef] [Google Scholar]
  • Fugelsang K.C., Edwards C.G., 2007. Wine microbiology: practical applications and procedures. 393 p. Springer, New York. [Google Scholar]
  • Fulcrand H., Cheynier V., Oszmianski J., Moutounet M., 1997. An oxidized tartaric acid residue as a new bridge potentially competing with acetaldehyde in flavan-3-ol condensation. Phytochemistry, 46, 223–227. [CrossRef] [Google Scholar]
  • Fulcrand H., Benabdeljalil C., Rigaud J., Cheynier V., Moutounet, M., 1998. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry, 47, 1401–1407. [CrossRef] [PubMed] [Google Scholar]
  • Flecknoe-Brown A., 2004. Controlled permeability' moulded wine tanks-new developments in polymer catalyst technology. Aust. NZ. Grapegrower & Winemaker, 480, 59–61. [Google Scholar]
  • Flecknoe-Brown A., 2005. Oxygen-permeable polyethylene vessels: A new approach to wine maturation. Aust. NZ. Grapegrower & Winemaker, 494, 53. [Google Scholar]
  • Gagg C.R., 2014. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail Anal., 40, 114–40. [CrossRef] [Google Scholar]
  • Galani-Nikolakaki S., Kallithrakas-Kontos N., Katsanos A.A., 2002. Trace element analysis of Cretan wines and wine products. Sci. Total Environ., 285, 155–163. [CrossRef] [Google Scholar]
  • Garde-Cerdán T., Ancín-Azpilicueta C., 2006. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Tech., 17, 438–447. [CrossRef] [Google Scholar]
  • Gil i Cortiella M., Úbeda C., Covarrubias J.I., Peña-Neira Á., 2020. Chemical, physical, and sensory attributes of Sauvignon blanc wine fermented in different kinds of vessels. Innov. Food Sci. Emerg. Technol., 66, 102521. [CrossRef] [Google Scholar]
  • Gil i Cortiella M., Ubeda C., Covarrubias J.I., Laurie V.F., Peña-Neira Á., 2021. Chemical and physical implications of the use of alternative vessels to oak barrels during the production of white wines. Molecules, 26, 554. [CrossRef] [PubMed] [Google Scholar]
  • Giuliani A., Zuccarini M., Cichelli A., Khan H., Reale M., 2020. Critical review on the presence of phthalates in food and evidence of their biological impact. Int. J. Environ. Res. Public Health, 17, 5655. [CrossRef] [Google Scholar]
  • Glabasnia A., Hofmann T., 2006. Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. J. Agric. Food Chem., 54, 3380–3390. [CrossRef] [PubMed] [Google Scholar]
  • Gómez-Alonso S., Blanco-Vega D., Gómez M.V., Hermosín-Gutiérrez I., 2012. Synthesis, isolation, structure elucidation, and color properties of 10-acetyl-pyranoanthocyanins. J. Agric. Food Chem., 60, 12210–12223. [CrossRef] [PubMed] [Google Scholar]
  • Gómez-Plaza E., Cano-López M.A., 2011. A review on micro-oxygenation of red wines: Claims, benefits and the underlying chemistry. Food Chem., 125, 1131–1140. [CrossRef] [Google Scholar]
  • González-Sanjosé M.L, Ortega-Heras M., Pérez-Magariño S., 2008. Microoxygenation treatment and sensory properties of young red wines. Food Sci. Technol. Int., 14, 123–130. [CrossRef] [Google Scholar]
  • Grace V., 1979. Amphoras and the ancient wine trade. 32 p. The American school of classical studies at Athens, Princeton. [Google Scholar]
  • Graham R.A., 1979. Influence of yeast strain and pH on pyruvic acid production during alcoholic fermentation. Am. J. Enol. Vitic., 30, 318–320. [CrossRef] [Google Scholar]
  • Grant-Preece P., Barril C., Schmidtke L.M., Scollary G.R., Clark A.C., 2017. Light-induced changes in bottled white wine and underlying photochemical mechanisms. Crit. Rev. Food Sci. Nutr., 57, 743–754. [CrossRef] [PubMed] [Google Scholar]
  • Guillaument R., Caltagirone J.P., 2016. Cahier technique. Comment définir la cuve la mieux adaptée à ses besoins pour optimiser sa production et obtenir l’équilibre souhaité? Une solution rapide: la simulation numérique de la circulation du vin dans des cuves de différentes géométries. Rev. Française d’Oenol., 279, 13–16. [Google Scholar]
  • Guth H., 1997. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem., 45, 3027–3032. [Google Scholar]
  • Harutyunyan M., Malfeito-Ferreira M., 2022. Historical and heritage sustainability for the revival of ancient wine-making techniques and wine styles. Beverages, 8, 10. [CrossRef] [Google Scholar]
  • He J., Santos-Buelga C., Mateus N., de Freitas V., 2006. Isolation and quantification of oligomeric pyranoanthocyanin-flavanol pigments from red wines by combination of column chromatographic techniques. J. Chromatogr. A, 1134, 215–225. [CrossRef] [Google Scholar]
  • He F., Liang N-N., Mu L., Pan Q.H., Wang J., Reeves M.J., 2012. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules, 17, 1483–1519. [CrossRef] [PubMed] [Google Scholar]
  • Issa-Issa H., Lipan L., Cano-Lamadrid M., Nemś A., Corell M., Calatayud-García P., 2021. Effect of aging vessel (clay-tinaja versus oak barrel) on the volatile composition, descriptive sensory profile, and consumer acceptance of red wine. Beverages, 7, 35. [CrossRef] [Google Scholar]
  • Jackson R.S., 2008. Wine science: principles and applications. 717 p. Academic Press, Canada. [Google Scholar]
  • Jordão A.M., Ricardo-da-Silva J., 2019. Evolution of proanthocyanidins during grape maturation, winemaking, and aging process of red wines. In: Red Wine Technology. 177–189. Morata A. (ed.), Academic Press, London. [CrossRef] [Google Scholar]
  • Jourdes M., Michel J., Saucier C., Quideau S., Teissedre P.-L., 2011. Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips. Anal. Bioanal. Chem. 401, 1531–1539. [CrossRef] [PubMed] [Google Scholar]
  • Junqua R., Zeng L., Pons A., 2021. Oxygen gas transfer through oak barrels: a macroscopic approach. OENO One, 55, 53–65. [CrossRef] [Google Scholar]
  • Kaya A., Bruno de Sousa R., Curvelo-Garcia A.S., Ricardo-da-Silva J., Catarino S., 2017. Effect of wood aging on mineral composition and wine 87Sr/86Sr isotopic ratio. J. Agric. Food Chem., 65, 4766–4776. [CrossRef] [PubMed] [Google Scholar]
  • Kelly M., Wollan D., 2003. Micro-oxygenation of wine in barrels. Aust. NZ. Grapegrower & Winemaker, 29–32. [Google Scholar]
  • Kontoudakis N., González E., Gil M., Esteruelas M., Fort F., Canals J.M., Zamora F., 2011. Influence of wine pH on changes in color and polyphenol composition induced by micro-oxygenation. J. Agric. Food Chem., 59, 1974–1984. [CrossRef] [PubMed] [Google Scholar]
  • Kourakou-Dragona S., 2016. Vine and wine in the ancient Greek world. Foinikas Publications, Athens. [Google Scholar]
  • Lan H., Li S., Yang J., Li J., Yuan C., Guo A., 2021. Effects of light exposure on chemical and sensory properties of storing Meili Rosé wine in colored bottles. Food Chem., 345, 128854. [CrossRef] [Google Scholar]
  • Liu S.Q., Pilone G.J., 2000. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Tech., 35, 49–61. [CrossRef] [Google Scholar]
  • Ma W., Guo A., Zhang Y., Wang H., Liu Y., Li H., 2014. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Tech., 40, 6–19. [CrossRef] [Google Scholar]
  • Maioli F., Picchi M., Guerrini L., Parenti A., Domizio P., Andrenelli L., 2022. Monitoring of Sangiovese red wine chemical and sensory parameters along one-year aging in different tank materials and glass bottle. ACS Food Sci. Technol., 2(2), 221–239. [CrossRef] [Google Scholar]
  • Malfeito-Ferreira M., 2018. Two decades of “horse sweat” taint and Brettanomyces yeasts in wine: Where do we stand now? Beverages, 4, 32. [CrossRef] [Google Scholar]
  • Malfeito-Ferreira M., 2019. Spoilage yeasts in red wines. In: Red wine technology. 219–233. Morata A. (ed.), Elsevier, London. [CrossRef] [Google Scholar]
  • Martínez-Gil A., Del Alamo-Sanza M., Nevares I., 2022. Evolution of red wine in oak barrels with different oxygen transmission rates. Phenolic compounds and colour. LWT, 158, 113133. [CrossRef] [Google Scholar]
  • Martins N., Garcia R., Mendes D., Freitas A.M.C., da Silva M.G., Cabrita M.J., 2018. An ancient winemaking technology: Exploring the volatile composition of amphora wines. LWT, 96, 288–95. [CrossRef] [Google Scholar]
  • Mateus N., Silva A.M.S., Rivas-Gonzalo J.C., Santos-Buelga C., de Freitas V., 2003. A new class of blue anthocyanin- derived pigments isolated from red wines. J. Agric. Food. Chem., 51, 1919–23. [CrossRef] [PubMed] [Google Scholar]
  • Mateus N., Oliveira J., Santos-Buelga C., Silva A.M.S., de Freitas V., 2004. NMR structure characterization of a new vinylpyranoanthocyanin–catechin pigment (a portisin). Tetrahedron Lett., 45, 3455–7. [CrossRef] [Google Scholar]
  • Mateus N., Oliveira J., Pissarra J., González-Paramás A.M., Rivas-Gonzalo J.C., Santos-Buelga C., 2006. A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chem., 97, 689–95. [CrossRef] [Google Scholar]
  • Matmatch, 2022. https://matmatch.com/learn/material/aisi-304-stainless-steel. (accessed 13/06/2022) [Google Scholar]
  • Mazauric J.P., Salmon J.M., 2005. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines. J. Agric. Food Chem., 53, 5647–53. [CrossRef] [PubMed] [Google Scholar]
  • Mazza G., Brouillard R., 1990. The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry, 29, 1097–102. [CrossRef] [Google Scholar]
  • McCord J., 2003. Application of toasted oak and micro-oxygenation to ageing of Cabernet Sauvignon wines. Aust. NZ. Grapegrower & Winemaker, 7, 43–51. [Google Scholar]
  • Michel J., Jourdes M., Silva M.A., Giordanengo T., Mourey N., Teissedre P-L., 2011. Impact of concentration of ellagitannins in oak wood on their levels and organoleptic influence in red wine. J. Agric. Food Chem., 59, 5677–83. [CrossRef] [PubMed] [Google Scholar]
  • Mierczynska‐Vasilev A., Smith P.A., 2015. Current state of knowledge and challenges in wine clarification. Aust. J. Grape Wine Res., 21, 615–26. [CrossRef] [Google Scholar]
  • Morata A., Gómez-Cordovés M.C., Colomo B., Suárez J.A., 2003. Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: relationship with vitisin A and B formation in red wines. J. Agric. Food Chem., 51, 7402–7409. [CrossRef] [PubMed] [Google Scholar]
  • Morata A., González C., Tesfaye W., Loira I., Suárez-Lepe J A., 2019. Maceration and fermentation: New technologies to increase extraction. In: Red Wine Technology. 35–49. Morata A. (ed.), Academic Press, London. [CrossRef] [Google Scholar]
  • Moreno-Arribas M.V., Polo M.C., 2009. Wine Chemistry and Biochemistry. 735 p. Springer, New York. [Google Scholar]
  • Moutounet M., Mazauric J.P., Saint-Pierre B., Micaleff J.P., Sarris J., 1994. Causes et conséquences de microdèformations des barriques au cours de l’élevage des vins. Revue d’ Oenologes, 74, 34–39. [Google Scholar]
  • Mwithiga G., Magama P., Hlophe M., 2013. Humidity Control System for Wine Maturation Structures. In: Advanced Materials Research. Trans. Tech. Publ., 824, 301–310. [Google Scholar]
  • Navarro M., Kontoudakis N., Gómez-Alonso S., García-Romero E., Canals J.M., Hermosín-Gutíerrez I., 2016. Influence of the botanical origin and toasting level on the ellagitannin content of wines aged in new and used oak barrels. Food Res. Int., 87, 197–203. [CrossRef] [Google Scholar]
  • Navarro M., Kontoudakis N., Gómez-Alonso S., García-Romero E., Canals J.M., Hermosín-Gutíerrez I., 2018. Influence of the volatile substances released by oak barrels into a Cabernet Sauvignon red wine and a discolored Macabeo white wine on sensory appreciation by a trained panel. Eur. Food Res. Technol., 244, 245–258. [CrossRef] [Google Scholar]
  • Nevares I., del Alamo-Sanza M., 2018. New materials for the aging of wines and beverages: Evaluation and comparison. 375–407. In: Food packaging and preservation. Elsevier, New York. [Google Scholar]
  • Nevares I., del Alamo-Sanza M., 2021. Characterization of the oxygen transmission rate of new-ancient natural materials for wine maturation containers. Foods, 10: 140. [CrossRef] [PubMed] [Google Scholar]
  • Nocera A., Ricardo-da-Silva J.M., Canas S., 2020. Antioxidant activity and phenolic composition of wine spirit resulting from an alternative ageing technology using micro-oxygenation: A preliminary study. Oeno One, 54, 485–496. [CrossRef] [Google Scholar]
  • Ohloff G., 1978. Recent developments in the field of naturally-occurring aroma components. Progress Chem. Org. Nat. Prod., 35, 431–527. [Google Scholar]
  • Oliveira C.M., Ferreira A.C.S., De Freitas V., Silva A.M.S., 2011. Oxidation mechanisms occurring in wines. Food Res. Int., 44, 1115–1126. [CrossRef] [Google Scholar]
  • Oliveira J., de Freitas V., Mateus N., 2019. Polymeric pigments in red ines. In: Red wine technology. 207–217. Morata A. (ed.), Academic Press, London. [CrossRef] [Google Scholar]
  • Omnexus. https://omnexus.specialchem.com/polymer-properties/properties/thermal-insulation#:~:text=Plastics%20are%20poor%20heat%20conductors,for%20conduction%20mechanisms%20like%20metals. (accessed 15/07/2022) [Google Scholar]
  • Ough C.S., Crowell E.A., Gutlove B.R., 1988. Carbamyl compound reactions with ethanol. Am. J. Enol. Vitic., 39, 239–42. [CrossRef] [Google Scholar]
  • Palomero F., Morata A., Benito S., González M.C., Suárez-Lepe J.A., 2007. Conventional and enzyme-assisted autolysis during ageing over lees in red wines: Influence on the release of polysaccharides from yeast cell walls and on wine monomeric anthocyanin content. Food Chem., 105, 838–46. [CrossRef] [Google Scholar]
  • Pambianchi D., 2021. A comparative study on the evolution of wine aged for 12 months in a flextank vs. a two-year-old oak barrel. https://flextank.com/2021/05/11/flextank-vs-a-two-year-old-oak-barrel-a-study/. (accessed 15/07/2022) [Google Scholar]
  • Parpinello G.P., Plumejeau F., Maury C., Versari A., 2012. Effect of micro‐oxygenation on sensory characteristics and consumer preference of Cabernet Sauvignon wine. J. Sci. Food Agric., 92, 1238–44. [CrossRef] [Google Scholar]
  • Pasteur M.L., 1875. Etudes sur le vin. Librairie F. Savy, Paris, France. [Google Scholar]
  • Peleg H., Gacon K., Schlich P., Noble A.C., 1999. Bitterness and astringency of flavan‐3‐ol monomers, dimers and trimers. J. Sci. Food Agric., 79, 1123–1128. [Google Scholar]
  • Peña J.T., 2007. Roman pottery in the archaeological record. Cambridge University Press, Cambridge. [Google Scholar]
  • Peng S., Scalbert A., Monties B., 1991. Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry, 30, 775–8. [CrossRef] [Google Scholar]
  • Peng Z., Iland P.G., Oberholster A., Sefton M.A., Waters E.J., 2002. Analysis of pigmented polymers in red wine by reverse phase HPLC. Aust. J. Grape Wine Res., 8, 70–75. [CrossRef] [Google Scholar]
  • Perestrelo R., Silva C., Câmara J.S., 2019. Madeira wine volatile profile. A platform to establish madeira wine aroma descriptors. Molecules, 24, 3028. [CrossRef] [PubMed] [Google Scholar]
  • Pérez-Coello M.S., Sanz J., Cabezudo M.D., 1999. Determination of volatile compounds in hydroalcoholic extracts of French and American oak wood. Am. J. Enol. Vitic., 50, 162–165. [CrossRef] [Google Scholar]
  • Pérez-Prieto L.J., López-Roca J.M., Martínez-Cutillas A., Pardo Mínguez F., Gómez-Plaza E., 2002. Maturing wines in oak barrels. Effects of origin, volume, and age of the barrel on the wine volatile composition. J. Agric. Food Chem., 50, 3272–6. [CrossRef] [PubMed] [Google Scholar]
  • Pfahl L., Catarino S., Fontes N., Graça A., Ricardo-da-Silva J., 2021. Effect of barrel-to-barrel variation on color and phenolic composition of a red wine. Foods, 10, 1669. [CrossRef] [PubMed] [Google Scholar]
  • Piergiovanni L., Limbo S., 2016. Introduction to food packaging materials. In: Food Packaging Materials. 1–3. Springer, Cham. [Google Scholar]
  • Piggott J.R., Paterson A., 1993. Understanding natural flavors. 318 p. Springer Science & Business Media, New York. [Google Scholar]
  • Pissarra J., Mateus N., Rivas‐Gonzalo J., Santos Buelga C., de Freitas V., 2003. Reaction between malvidin 3‐glucoside and (+)‐catechin in model solutions containing different aldehydes. J. Food Sci., 68, 476–81. [CrossRef] [Google Scholar]
  • Plank C.M., Trela B.C., 2018. A review of plastics use in winemaking: Haccp considerations. Am. J. Enol. Vitic., 69, 307–320. [CrossRef] [Google Scholar]
  • Pontallier P., 1992. The intervention of oak wood in the making of great red wines. J. Wine Res., 3, 241–247. [CrossRef] [Google Scholar]
  • Prajapati H.T., Arora N.K., 2011. A study on oxygen permeability of concrete containing different water proofing admixtures and cementrations materials. Int. J. Adv. Eng. Res. Stud., 1, 55–58. [Google Scholar]
  • Puech J.-L., 1987. Extraction of phenolic compounds from oak wood in model solutions and evolution of aromatic aldehydes in wines aged in oak barrels. Am. J. Enol Vitic., 38, 236–238. [CrossRef] [Google Scholar]
  • Rankine B.C., 1965. Factors influencing the pyruvic acid content of wines. J. Sci. Food Agric., 16, 394–398. [CrossRef] [Google Scholar]
  • Rasines-Perea Z., Jacquet R., Jourdes M., Quideau S., Teissedre P.-L., 2019. Ellagitannins and flavano-ellagitannins: Red wines tendency in different areas, barrel origin and ageing time in barrel and bottle. Biomolecules, 9, 316. [CrossRef] [PubMed] [Google Scholar]
  • Remy-Tanneau S., Le Guernevé C., Meudec E., Cheynier V., 2003. Characterization of a colorless anthocyanin− flavan-3-ol dimer containing both carbon− carbon and ether interflavanoid linkages by NMR and mass spectrometry. J. Agric. Food Chem., 51, 3592–3597. [CrossRef] [PubMed] [Google Scholar]
  • Ribéreau-Gayon J., 1933. Contribution à l’étude des oxydations et réductions dans les vins. 205–210. Delmas. [Google Scholar]
  • Gayon P., Dubourdieu D., Donèche B., Lonvaud A., 2006. Handbook of enology, volume 1: The microbiology of wine and vinifications. John Wiley & Sons, Chichester. [Google Scholar]
  • Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2021. Handbook of enology, volume 2: The chemistry of wine stabilization and treatments. John Wiley & Sons, Chichester. [Google Scholar]
  • Rodríguez-Rodríguez P., Gómez-Plaza E., 2012. Dependence of oak-related volatile compounds on the physicochemical characteristics of barrel-aged wines. Food Technol. Biotech., 50, 59. [Google Scholar]
  • Romano A., Perello M.C., Lonvaud-Funel A., Sicard G., de Revel G., 2009. Sensory and analytical re-evaluation of “Brett character. Food Chem., 114, 15–19. [CrossRef] [Google Scholar]
  • Roussey C., Colin J., Du Cros R.T., Casalinho J., Perré P., 2021. In-situ monitoring of wine volume, barrel mass, ullage pressure and dissolved oxygen for a better understanding of wine-barrel-cellar interactions. J. Food Eng., 291, 110233. [CrossRef] [Google Scholar]
  • Rytkönen P., Vigerland L., Borg E.A., 2019. Georgia tells its story: Wine marketing through storytelling. AAWE, 240, 15. [Google Scholar]
  • Salas E., Atanasova V., Poncet-Legrand C., Meudec E., Mazauric J.P., Cheynier V., 2004. Demonstration of the occurrence of flavanol–anthocyanin adducts in wine and in model solutions. Anal. Chim. Acta., 513, 325–332. [CrossRef] [Google Scholar]
  • Sánchez-Gómez R., del Alamo-Sanza M., Martínez-Gil A.M., Nevares I., 2020. Red wine aging by different micro-oxygenation systems and oak wood—effects on anthocyanins, copigmentation and color evolution. Processes, 8, 1250. [CrossRef] [Google Scholar]
  • Schmidtke L.M., Clark A.C., Scollary G.R., 2011. Micro-oxygenation of red wine: Techniques, applications, and outcomes. Crit. Rev. Food Sci., 51, 115–131. [CrossRef] [PubMed] [Google Scholar]
  • Schwarz M., Wabnitz T.C., Winterhalter P., 2003. Pathway leading to the formation of anthocyanin− vinylphenol adducts and related pigments in red wines. J. Agric. Food Chem., 51, 3682–3687. [CrossRef] [PubMed] [Google Scholar]
  • Scollary G.R., Pásti G., Kállay M., Blackman J., Clark A.C., 2012. Astringency response of red wines: Potential role of molecular assembly. Trends Food Sci. Tech., 27, 25–36. [CrossRef] [Google Scholar]
  • Silva Ferreira A.C., Ávila I.M.L.B, Guedes de Pinho P., 2005. Sensorial impact of sotolon as the “perceived age” of tawny port wines. In: Natural Flavors and Fragrances ACS Symposium Series. 141–159. Frey C. and Rouseff R. (ed.) American Chemical Society, Washington. [Google Scholar]
  • Sims C.A., Morris J.R., 1984. Effects of pH, sulfur dioxide, storage time, and temperature on the color and stability of red muscadine grape wine. Am. J. Enol. Vitic., 35, 35–39. [CrossRef] [Google Scholar]
  • Singleton V.L., 1974. Some aspects of the wooden container as a factor in wine maturation. In: The chemistry of winemaking, 137, 254–277. Webb A.D. (Ed.), Amer. Chem. Soc., Boston. [CrossRef] [Google Scholar]
  • Singleton V.L., 1987. Oxygen with phenols and related reactions in musts, wines, and model systems: observations and practical implications. Am. J. Enol. Vit., 38, 69–77. [CrossRef] [Google Scholar]
  • Somers T.C., Evans M.E., 1986. Evolution of red wines I. Ambient influences on colour composition during early maturation. Vitis, 25, 31–39. [Google Scholar]
  • Soroka I., 1979. Portland cement paste and concrete. 338 p. Macmillan International Higher Education, London. [Google Scholar]
  • Sousa C., Mateus N., Silva A.M.S., González-Paramás A.M., Santos-Buelga C., de Freitas V., 2007. Structural and chromatic characterization of a new Malvidin 3-glucoside–vanillyl–catechin pigment. Food Chem., 102, 1344–1351. [CrossRef] [Google Scholar]
  • Spillman P.J., Pollnitz A.P., Liacopoulos D., Skouroumounis G.K., Sefton MA., 1997. Accumulation of vanillin during barrel-aging of white, red, and model wines. J. Agric. Food Chem., 45, 2584–2589. [CrossRef] [Google Scholar]
  • Stadler E., Fischer U., 2020. Sanitization of oak barrels for wine—A review. J. Agric. Food Chem., 68, 5283–5295. [CrossRef] [PubMed] [Google Scholar]
  • Stefenon C.A., Bonesi C.D.M., Marzarotto V., Barnabé D., Spinelli F.R., Webber V., 2014. Phenolic composition and antioxidant activity in sparkling wines: Modulation by the ageing on lees. Food Chem., 145, 292–999. [CrossRef] [Google Scholar]
  • Sun B., de Sá M., Leandro C., Caldeira I., Duarte F.L., Spranger I., 2013. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency. J. Agric. Food Chem., 61, 939–946. [CrossRef] [PubMed] [Google Scholar]
  • Szentpeteri C., 2018. Winery equipment: Steel yourself for double duty tanks: Analysing the best stainless steel grades for your wine tank. Aust. NZ. Grape and Wine, 656. [Google Scholar]
  • Tao J., Dykes S.I., Kilmartin P.A., 2007. Effect of SO2 concentration on polyphenol development during red wine micro-oxygenation. J. Agric. Food Chem., 55, 6104–6109. [CrossRef] [PubMed] [Google Scholar]
  • Tavares M., Jordão A.M., Ricardo-da-Silva J.M., 2018. Impact of cherry, acacia and oak chips on red wine phenolic parameters and sensory profile. Oeno One, 51, 329–342. [Google Scholar]
  • Teissedre P.-L., Cabrera Vique C., Cabanis M.T., 1998. Determination of nickel in French wines and grapes. Am. J. Enol. Vitic., 49, 205–210. [CrossRef] [Google Scholar]
  • Tengzhen M., Chen K., Yan H., Shunyu H., Yang B., 2019. Red winemaking in cold regions with short maturity periods. In: Red Wine Technology.357–370. Morata A. (ed.), Academic Press, London. [CrossRef] [Google Scholar]
  • Timberlake C.F., Bridle P., 1976. Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic. 27, 97–105. [CrossRef] [Google Scholar]
  • Twede D., 2005. The cask age: The technology and history of wooden barrels. Packag. Technol. Sci., 18, 253–264. [CrossRef] [Google Scholar]
  • Ubeda C., Peña-Neira Á., Gil i Cortiella M., 2022. Combined effects of the vessel type and bottle closure during Chilean Sauvignon Blanc wine storage over its volatile profile. Food Res. Int., 156, 111178. [CrossRef] [Google Scholar]
  • Ugliano M., 2013. Oxygen contribution to wine aroma evolution during bottle aging. J. Agric. Food Chem., 61, 6125–6136. [CrossRef] [PubMed] [Google Scholar]
  • Vidal S., Aagaard O., 2008. Oxygen management during vinification and storage of Shiraz wine. Aust. NZ Wine Ind. J., 23, 56–63. [Google Scholar]
  • Vigentini I., Romano A., Compagno C., Merico A., Molinari F., Tirelli A., 2008. Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions. FEMS Yeast Res., 8, 1087–1096. [CrossRef] [Google Scholar]
  • Vivas N., 1999. Modelisation et calcul du bilan des apports d’oxygene au cours de l’elevage des vines rouges. IV-elevage des vins rouges en conditions d’oxygations m enagees controlees. Progrès Agric. Vitic., 116, 305–311. [Google Scholar]
  • Vivas N., 2002. Manuel de tonnellerie: À l’usage des utilisateurs de futaille. 207 p. Éditions Féret, Bordeaux. [Google Scholar]
  • Vivas N., Glories Y., 1993. Les phénomènes d'oxydoréduction liés à l'élevage en barrique des vins rouges: aspects technologiques. Rev. Fr. Oenol., 33, 33–38. [Google Scholar]
  • Vivas N., Glories Y., 1996. Role of oak wood ellagitannins in the oxidation process of red wines during aging. Am. J. Enol. Vitic., 47, 103–107. [CrossRef] [Google Scholar]
  • Waterhouse A.L., Laurie V.F., 2006. Oxidation of wine phenolics: A critical evaluation and hypotheses. Am. J. Enol. Vitic., 57, 306–313. [CrossRef] [Google Scholar]
  • Waterhouse A.L., Sacks G.L., Jeffery D.W., 2016. Understanding wine chemistry. 443 p. John Wiley & Sons, Chichester. [Google Scholar]
  • Wilkinson K., Li S., Crump A., 2016. Wine maturation: Oak alternatives: a balance between science and finance. Wine Vitic. J., 31, 31–35. [Google Scholar]
  • Winstel D., Gautier E., Marchal A., 2020. Role of oak coumarins in the taste of wines and spirits: Identification, quantitation, and sensory contribution through perceptive interactions. J. Agric. Food Chem., 68, 7434–7443. [CrossRef] [PubMed] [Google Scholar]
  • Yun T.S., Jeong Y.J., Youm K.-S., 2014. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures. Sci. World J., 13, 939632. [Google Scholar]
  • Zaffora A., i Franco F., Santamaria M., 2021. Corrosion of stainless steel in food and pharmaceutical industry. Curr. Opin. Electrochem., 29, 100760. [CrossRef] [Google Scholar]
  • Zamora F., 2003. Elaboración y crianza del vino tinto: Aspectos científicos y prácticos. 225 p. Ediciones Mundi-Prensa, Madrid. [Google Scholar]
  • Zamora., 2019. Barrel aging; Types of wood. In: Red wine technology. 125–143. Morata A. (ed). Academic Press, London. [Google Scholar]
  • Zhang B., Cai J., Duan C-Q., Reeves M.J., He F., 2015. A review of polyphenolics in oak woods. Int. J. Mol. Sci., 16, 6978–7014. [CrossRef] [Google Scholar]
  • Zhang X., Jeffery D.W., Li D., Lan Y., Zhao X., Duan C., 2022. Red wine coloration: A review of pigmented molecules, reactions, and applications. Compr. Rev. Food Sci. F., 21, 3834–3866. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.