Open Access
Issue
Ciência Téc. Vitiv.
Volume 38, Number 2, 2023
Page(s) 152 - 166
DOI https://doi.org/10.1051/ctv/ctv20233802152
Published online 18 October 2023
  • Albertin W., Miot-Sertier C., Bely M., Marullo P., Coulon J., Moine V., Colonna-Ceccaldi B., Masneuf-Pomarede I., 2014. Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must. Int. J. Food Microbiol., 178, 87–97. [CrossRef] [Google Scholar]
  • Alessandria V., Giacosa S., Campolongo S., Rolle L., Rantsiou K., Cocolin L., 2014. Yeast population diversity on grapes during on-vine withering and their dynamics in natural and inoculated fermentations in the production of icewines. Food Res. Int., 54, 139–147. [Google Scholar]
  • Barata A., Malfeito-Ferreira M., Loureiro V., 2012a. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Int. J. Food Microbiol., 154, 152–161. [CrossRef] [Google Scholar]
  • Barata A., Malfeito-Ferreira M., Loureiro V., 2012b. The microbial ecology of wine grape berries. Int. J. Food Microbiol., 153, 243–259. [CrossRef] [Google Scholar]
  • Bell S.J., Henschke P.A., 2014. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res., 11, 242–295. [Google Scholar]
  • Beltran G., Torija M.J., Novo M., Ferrer N., Poblet M., Guillamón J.M., Rozs N., Mas A., 2014. Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Syst. Appl. Microbiol., 25, 287–293. [Google Scholar]
  • Bokulich N.A., Thorngate J.H., Richardson P.M., Mills D.A., 2014. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA., 111, 139–148. [CrossRef] [Google Scholar]
  • Bokulich N.A., Collins T., Masarweh C., Allen G., Heymann H., Ebeler S.E., Mills D.A., 2014. Fermentation Behavior Suggest Microbial Contribution to Regional. mBio, 7, 1–12. [Google Scholar]
  • Callejon R.M., Clavijo A., Ortigueira P., Troncoso A.M., Paneque P., Morales M.L., 2014. Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Anal. Chim. Acta., 660, 68–75. [Google Scholar]
  • Capece A., Romaniello R., Siesto G., Pietrafesa R., Massari C., Poeta C., Romano P., 2014. Selection of indigenous Saccharomyces cerevisiae strains for Nero d’Avola wine and evaluation of selected starter implantation in pilot fermentation. Int. J. Food Microbiol., 144, 187–192. [Google Scholar]
  • Capece A., Siesto G., Romaniello R., Lagreca V.M., Pietrafesa R., Calabretti A., Romano P., 2014. Assessment of competition in wine fermentation among wild Saccharomyces cerevisiae strains isolated from Sangiovese grapes in Tuscany region. LWT - Food Sci. and Technol., 54, 485–492. [Google Scholar]
  • Capece A., Romaniello R., Pietrafesa R., Romano P., 2014. Indigenous Saccharomyces cerevisiae yeasts as a source of biodiversity for the selection of starters for specific fermentations. BIO Web Conf., 3, 02003. [CrossRef] [EDP Sciences] [Google Scholar]
  • Carrau F.M., Medina K., Boido E., Farina L., Gaggero C., Dellacassa E., Versini G., Henschke P.A., 2014. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol. Lett., 243, 107–115. [Google Scholar]
  • Çelebi Uzkuç N.M., Şişli B., Ay M., Togay S.Ö., Karagül Yüceer Y., Bayhan A., Kırca Toklucu A., 2014. Effects of spontaneous fermentation on Karalahna and Cabernet Sauvignon young red wines: volatile compounds, sensory profiles and identification of autochthonous yeasts. Eur. Food Res. Technol., 246, 81–92. [Google Scholar]
  • Çelik Z.D., Erten H., Darici M., Cabaroğlu T., 2014. Molecular characterization and technological properties of wine yeasts isolated during spontaneous fermentation of Vitis vinifera L.cv. Narince grape must grown in ancient wine making area Tokat, Anatolia. BIO Web Conf., 9, 02017. [Google Scholar]
  • Cheng E., Martiniuk J.T., Hamilton J., McCarthy G., Castellarin S.D., Measday V., 2014. Characterization of sub-regional variation in Saccharomyces populations and grape phenolic composition in Pinot Noir vineyards of a Canadian wine region. Front Genet., 11, 1–19. [Google Scholar]
  • Christofi S., Papanikolaou S., Dimopoulou M., Terpou A., Cioroiu I.B., Cotea V., Kallithraka S., 2014. Effect of yeast assimilable nitrogen content on fermentation kinetics, wine chemical composition and sensory character in the production of Assyrtiko wines. Appl. Sci. (Switz.), 12. [Google Scholar]
  • Ciani M., Comitini F., 2014. Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann. Microbiol., 61, 25–32. [Google Scholar]
  • Clemente-Jimenez J.M., Mingorance-Cazorla L., Martínez-Rodríguez S., Las Heras-Vázquez F.J., Rodríguez-Vico F., 2014. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol., 21, 149–155. [Google Scholar]
  • Duarte F.L., Egipto R., Baleiras-Couto M.M., 2014. Mixed Fermentation with Metschnikowia pulcherrima using different grape varieties. Fermentation, 5, 1–9. [Google Scholar]
  • Eder R., Rosa A.L., 2014. Genetic, physiological, and industrial aspects of the fructophilic non-Saccharomyces yeast species, Starmerella bacillaris. Fermentation, 87, 1–15. [Google Scholar]
  • Esteve-Zarzoso B., Belloch C., Uruburu F., Querol A., 2014. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol., 49, 329–337. [Google Scholar]
  • Garofalo C., Russo P., Beneduce L., Massa S., Spano G., Capozzi V., 2014. Non-Saccharomyces biodiversity in wine and the ‘microbial terroir’: a survey on Nero di Troia wine from the Apulian region, Italy. Ann. Microbiol. 66, 143–150. [Google Scholar]
  • González-Pombo P., Fariña L., Carrau F., Batista-Viera F., Brena B.M., 2014. A novel extracellular β-glucosidase from Issatchenkia terricole: Isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochem., 46, 385–389. [Google Scholar]
  • González B., Vázquez J., Morcillo-Parra M.Á., Mas A., Torija M.J., Beltran G., 2014. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol., 74, 64–74. [Google Scholar]
  • González-Alonso I., Walker M.E., Pascual-Vallejo M.E., Naharro-Carrasco G., Jiranek V., 2014. Capturing yeast associated with grapes and spontaneous fermentations of the Negro Saurí minority variety from an experimental vineyard near León. Sci. Rep., 11, 1–12. [Google Scholar]
  • Gump B.H., Zoecklein B.W., Fugelsang K.C., 2014. Prediction of Prefermentation Nutritional Status of Grape Juice – The Formal Method. In: Methods in Biotechnology: Food Microbiology Protocols. Spencer J.F.T., Ragout Spencer A.L. (ed.), Humana Press, Totowa, NJ. [Google Scholar]
  • Herraiz T., Herraiz M., Reglero G., Martin-Alvarez P.J., Cabezudo M.D., 2014. Changes in the composition of alcohols and aldehydes of C6 chain length during the alcoholic fermentation of grape must. J. Agric. Food Chem., 38, 969–972. [Google Scholar]
  • Hranilovic A., Gambetta J.M., Jeffery D.W., Grbin P.R., Jiranek V., 2014. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. Int. J. Food Microbiol. 329, 108651. [Google Scholar]
  • Hu K., Jin G., Mei W., Li T., Tao Y., 2014. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum / S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem., 239, 495–501. [Google Scholar]
  • Jiang B., Zhang Z., 2014. Volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the Loess Plateau region of China. Molecules, 15, 9184–9196. [Google Scholar]
  • Jolly, N.P., Varela C., Pretorius I.S., 2014. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res., 14, 215–237. [CrossRef] [Google Scholar]
  • Katarína F., Katarína M., Katarína Ď., Ivan Š., Fedor M., 2014. Influence of yeast strain on aromatic profile of Gewürztraminer wine. LWT - Food Sci. Technol., 59, 256–262. [CrossRef] [Google Scholar]
  • Lambrechts M.G., Pretorius I.S., 2014. Yeast and its Importance to Wine Aroma- A Review. S. Afr. J. Enol. Vitic., 21, 97–129. [Google Scholar]
  • Liang Z., Fang Z., Pai A., Luo J., Gan R., Gao Y., Lu J., Zhang P., 2014. Glycosidically bound aroma precursors in fruits: A comprehensive review. Crit. Rev. Food Sci. Nutr., 62, 215–243. [Google Scholar]
  • Liu S., Laaksonen O., Marsol-Vall A., Zhu B., Yang B., 2014. Comparison of volatile composition between alcoholic bilberry beverages fermented with Non- Saccharomyces yeasts and dynamic changes in volatile compounds during fermentation. J. Agric. Food Chem., 68, 3626–3637. [Google Scholar]
  • Lleixà J., Kioroglou D., Mas A., Portillo C., 2014. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes. Int. J. Food Microbiol. 281, 36–46. [Google Scholar]
  • Lõoke M., Kristjuhan K., Kristjuhan A., 2014. Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques, 50, 325–328. [Google Scholar]
  • Lopandic K., Tiefenbrunner W., Gangl H., Mandl K., Berger S., Leitner G., Abd-Ellah G.A., Querol A., Gardner R.C., Sterflinger K., Prillinger H., 2014. Molecular profiling of yeasts isolated during spontaneous fermentations of Austrian wines. FEMS Yeast Res., 8, 1063–1075. [Google Scholar]
  • López S., Mateo J.J., Maicas S., 2014. Screening of Hanseniaspora strains for the production of enzymes with potential interest for winemaking. Fermentation, 2, 1–16. [Google Scholar]
  • Mateo J.J., Jiménez M., 2014. Monoterpenes in grape juice and wines. J. Chromatogr. A., 881, 557–567. [Google Scholar]
  • Mauricio J.C., Moreno J.J., Valero E.M., Zea L., Medina M., Ortega J.M., 2014. Ester formation and specific activities of in vitro alcohol acetyltransferase and esterase by Saccharomyces cerevisiae during grape must fermentation. J. Agric. Food Chem., 41, 2086–2091. [Google Scholar]
  • Morata A., Loira I., Escott C., del Fresno J.M., Bañuelos M.A., Suárez-Lepe J.A., 2014. Applications of Metschnikowia pulcherrim a in wine biotechnology. Fermentation, 5, 63. [Google Scholar]
  • OIV (2019). Compendium of International Methods of Wine and Must Analysis (Volume 1). In: International Organisation of Vine and Wine. Paris [Google Scholar]
  • Panighel A., Flamini R., 2014. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds. Molecules, 19, 21291–21309. [CrossRef] [PubMed] [Google Scholar]
  • Patel S., Shibamoto T., 2014. Effect of different strains of Saccharomyces cerevisiae on production of volatiles in Napa Gamay wine and Petite Sirah wine. J. Agric. Food Chem., 50, 5649–5653. [Google Scholar]
  • Romano P., Braschi G., Siesto G., Patrignani F., Lanciotti R., 2014. Role of yeasts on the sensory component of wines. Foods, 11, 1921. [Google Scholar]
  • Russo P., Tufariello M., Renna R., Tristezza M., Taurino M., Palombi L., Capozzi V., Rizzello C.G., Grieco F., 2014. New insights into the oenological significance of Candida zemplinina: Impact of selected autochthonous strains on the volatile profile of Apulian wines. Microorganism, 8, 628. [Google Scholar]
  • Sadoudi M., Tourdot-Maréchal R., Rousseaux S., Steyer D., Gallardo-Chacón J.J., Ballester J., Vichi S., Guérin-Schneider R., Caixach J., Alexandre H., 2014. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol., 32, 243–253. [Google Scholar]
  • Saerens S.M.G., Delvaux F., Verstrepen K.J., Dijck P.V., Thevelein J.M., Delvaux F.R., 2008., Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol., 74, 454–461. [CrossRef] [PubMed] [Google Scholar]
  • Senses-Ergul S., Ozbas, Z.Y., 2014. Characterization of some indigenous Saccharomyces cerevisiae isolates obtained during vinification of ‘Kalecik Karasi’ and ‘Emir’ grapes grown in central Anatolia. Ciência Téc. Vitiv., 31, 51-62. [Google Scholar]
  • Shi X., Liu Y., Ma Q., Wang J., Luo J., Suo R., Sun J., 2014. Effects of low temperature on the dynamics of volatile compounds and their correlation with the microbial succession during the fermentation of Longyan wine. LWT - Food Sci. Technol., 154, 112661. [Google Scholar]
  • Soares R.D., Welke J.E., Nicolli K.P., Zanus M., Caramao E.B., Manfroi V., Zini C.A., 2014. Monitoring the evolution of volatile compounds using gas chromatography during the stages of production of Moscatel sparkling wine. Food Chem., 183, 291–304. [Google Scholar]
  • Treeby M.T., Holzapfel B.P., Pickering G.J., Friedrich C.J., 2000. Vineyard nitrogen supply and Shiraz grape and wine quality. Acta Hortic., 512, 77–92. [CrossRef] [Google Scholar]
  • Tristezza M., Vetrano C., Bleve G., Spano G., Capozzi V., Logrieco A., Mita G., Grieco F., 2014. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol., 36, 335–342. [Google Scholar]
  • Tristezza M., Tufariello M., Capozzi V., Spano G., Mita G., Grieco F., 2014. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for industrial wine production. Front. Microbiol., 7, 1–14. [Google Scholar]
  • Varela C., Bartel C., Espinase N.D., Bilogrevic E., Tran T., Heinrich A., Balzan T., Bindon K., Borneman A., 2014. Volatile aroma composition and sensory profile of Shiraz and Cabernet Sauvignon wines produced with novel Metschnikowia pulcherrima yeast starter cultures. Aust. J. Grape Wine Res. 27, 406–418. [Google Scholar]
  • Vejarano R., Gil-Calderón A., 2014. Commercially available non-Saccharomyces yeasts for winemaking: Current market, advantages over Saccharomyces, biocompatibility, and safety. Fermentation, 7, 171. [Google Scholar]
  • Villena M.A., Iranzo J.F.Ú., Pérez A.I.B., 2014. β-Glucosidase activity in wine yeasts: Application in enology. Enzyme Microb. Technol., 40, 420–425. [Google Scholar]
  • Wei R., Chen N., Ding Y., Wang L., Liu Y., Gao F., Zhang L., Li H., Wang H., 2014. Correlations between microbiota with physicochemical properties and volatile compounds during the spontaneous fermentation of Cabernet Sauvignon (Vitis vinifera L.) wine. LWT - Food Sci. Technol., 163, 113529. [Google Scholar]
  • Yao M., Wang F., Breahna E., Arpentin G., 2014. The yeast on the grape berry surface influenced by climatic factors. BIO Web Conf., 39, 05002. [Google Scholar]
  • Zhang B., Tang C., Yang D., Liu H., Xue J., Duan C., Yan G., 2014. Effects of three indigenous non-Saccharomyces yeasts and their pairwise combinations in co-fermentation with Saccharomyces cerevisiae on volatile compounds of Petit Manseng wines. Food Chem., 368, 130807. [Google Scholar]
  • Zhao Y., Sun Q., Zhu S., Du F., Mao R., Liu L., Tian B., Zhu Y., 2014. Biodiversity of non-Saccharomyces yeasts associated with spontaneous fermentation of Cabernet Sauvignon wines from Shangri-La wine region, China. Sci. Rep., 11, 1–10. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.