Open Access
Ciência Téc. Vitiv.
Volume 38, Number 1, 2023
Page(s) 67 - 81
Published online 07 June 2023
  • Ai X., Pan F., Yang Z., Li J., Tuersuntuoheti T., Wang O., Zhao L., Zhao L., 2022. Computational design of a chitosan derivative for improving the color stability of anthocyanins: Theoretical calculation and experimental verification. Int. J. Biol. Macromol., 219, 721–729. [CrossRef] [Google Scholar]
  • Bakker J., Timberlake C., 1997. Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem., 45, 35–43. [CrossRef] [Google Scholar]
  • Boulton R., 2001. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Viticult., 52, 67–87. [CrossRef] [Google Scholar]
  • Burtch C. E., Mansfield A. K., Manns D.C., 2017. Reaction kinetics of monomeric anthocyanin conversion to polymeric pigment and significance to color in interspecific hybrid wines. J. Agric. Food Chem., 65, 6379–6386. [CrossRef] [PubMed] [Google Scholar]
  • Casassa L., Keller M., Harbertson J., 2015. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of Cabernet Sauvignon grapes and wines. Molecules, 20, 7820–7844. [CrossRef] [PubMed] [Google Scholar]
  • Cheynier V., 2002. Grape polyphenols and their reactions in wine. In: Polyphenols. 1–14. Maetens S., Treutter D., Forkmann G., (ed.), Freising-Weilhenstephan, Germany. [Google Scholar]
  • Drinkine J., Lopes P., Kennedy J. A., Teissedre P. L., Saucier C., 2007. Ethylidene-bridged flavan-3-ols in red wine and correlation with wine age. J. Agric. Food Chem., 55, 6292–6299. [CrossRef] [PubMed] [Google Scholar]
  • Dueñas M., Fulcrand H., Cheynier V., 2006. Formation of anthocyanin-flavanol adducts in model solutions. Anal. Chim. Acta, 563, 15–25. [CrossRef] [Google Scholar]
  • Dufour C, Sauvaitre I., 2000. Interactions between anthocyanins and aroma substances in a model system. Effect on the flavor of grape-derived beverages. J. Agric. Food Chem., 48, 1784–1788. [CrossRef] [PubMed] [Google Scholar]
  • Es-Safi N.E., Cheynier V., Moutounet M., 2000. Study of the reactions between (+)-catechin and furfural derivatives in the presence or absence of anthocyanins and their implication in food color change. J. Agric. Food Chem., 48, 5946–5954. [CrossRef] [PubMed] [Google Scholar]
  • Es-Safi N.E., Cheynier V., Moutounet M., 2002. Interactions between cyanidin 3-O-glucoside and furfural derivatives and their impact on food color changes. J. Agric. Food Chem., 50, 5586–5595. [CrossRef] [PubMed] [Google Scholar]
  • Es-Safi N. E., Fulcrand H., Cheynier V., Moutounet M., 1999. Studies on the acetaldehyde-induced condensation of (-)-epicatechin and malvidin 3-O-glucoside in a model solution system. J. Agric. Food Chem., 47, 2096–2102. [CrossRef] [PubMed] [Google Scholar]
  • Escribano-Bailón T., Álvarez-García M., Rivas-Gonzalo J. C., Heredia F. J., Santos-Buelga C., 2001. Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin 3-O-glucoside and (+)-catechin. J. Agric. Food Chem., 49, 1213–1217. [CrossRef] [PubMed] [Google Scholar]
  • Fulcrand H., Atanasova V., Salas E., Cheynier V., 2004. The fate of anthocyanins in wine: are there determining factors? In: Red Wine Color: Revealing the Mysteries. 68–88. Kennedy A. (ed.), Washington DC. [CrossRef] [Google Scholar]
  • Fulcrand H., Santos P.C.D., Sarni-Manchado P., Cheynier V., Moutounet M., 1996. New anthocyanin-derived wine pigments. In: 18th International Conference on Polyphenols (Polyphenols Communications 96). [Google Scholar]
  • Han F. L, Zhang W. N, Pan Q. H, Zheng C. R, Chen H. Y, Duan C. Q, 2008. Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Molecules, 13, 2859–2870. [CrossRef] [PubMed] [Google Scholar]
  • He F., Liang N.N., Mu L., Pan Q.H., Wang J., Reeves M. J., Duan C. Q., 2012. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules, 17, 1483–1519. [CrossRef] [PubMed] [Google Scholar]
  • Heredia F.J., Francia-Aricha E.M., Rivas-Gonzalo J. C., Vicario I.M., Santos-Buelga C., 1998. Chromatic characterization of anthocyanins from red grapes-I. pH effect. Food Chem., 63, 491–498. [CrossRef] [Google Scholar]
  • Lan H. N., Wang Y. X., Zheng M. Z., Han W. W., Zheng X., 2013. Using homology modeling, molecular dynamics and molecular docking techniques to identify inhibitor binding regions of somatostatin receptor 1. Chem. Res. Chin. Univ., 29, 139–143. [CrossRef] [Google Scholar]
  • Li L., Zhang M., Zhang S., Cui Y., Sun B., 2018. Preparation and antioxidant activity of ethyl-linked anthocyanin-flavanol pigments from model wine solutions. Molecules, 23, 1066. [CrossRef] [PubMed] [Google Scholar]
  • Liu K., Watanabe E., Kokubo H., 2017. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J. Comput. Aided Mol. Des., 31, 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Mano H., Ogasawara F., Sato K., Higo H., Minobe Y., 2007. Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant physiol., 143, 1252–1268. [CrossRef] [PubMed] [Google Scholar]
  • Mateus N., Silva A.M., Santos-Buelga C., Rivas-Gonzalo J. C., de Freitas V., 2002. Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J. Agric. Food Chem., 50, 2110–2116. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira J., Brás N.F., da Silva M.A., Mateus N., Parola A.J., de Freitas V., 2014. Grape anthocyanin oligomerization: A putative mechanism for red color stabilization? Phytochemistry, 105, 178–185. [CrossRef] [PubMed] [Google Scholar]
  • Pessenti I.L., Ayub R.A., Filho J.L.M., Clasen F.C., Rombaldi C.V., Botelho R.V. 2022. Influence of abscisic acid, Ascophyllum nodosum and Aloe vera on the phenolic composition and color of grape berry and wine of 'Cabernet Sauvignon' variety. Ciência Téc. Vitiv., 37, 1–12. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pissarra J., Mateus N., Rivas-Gonzalo J., Santos Buelga C., de Freitas V., 2003. Reaction between malvidin 3‐glucoside and (+)‐catechin in model solutions containing different aldehydes. J. Food Sci., 68, 476–481. [CrossRef] [Google Scholar]
  • Pittari E., Catarino S., Andrade M.C., Ricardo-da-Silva J., 2018. Preliminary results on tartaric stabilization of red wine by adding different carboxymethylcelluloses. Ciência Téc. Vitiv., 33, 47–57 [CrossRef] [EDP Sciences] [Google Scholar]
  • Prat-García S., Oliveira J., Alamo-Sanza M. D., de Freitas V., Nevares I., Mateus N., 2020. Characterization of anthocyanins and anthocyanin-derivatives in red wines during ageing in custom oxygenation oak wood barrels. Molecules, 26, 64. [CrossRef] [PubMed] [Google Scholar]
  • Rivas-Gonzalo J.C., Bravo-Haro S., Santos-Buelga C., 1995. Detection of compounds formed through the reaction of malvidin 3-monoglucoside and catechin in the presence of acetaldehyde. J. Agric. Food Chem., 43, 1444–1449. [CrossRef] [Google Scholar]
  • Salas E., Fulcrand H., Meudec E., Cheynier V., 2003. Reactions of anthocyanins and tannins in model solutions. J. Agric. Food Chem., 51, 7951–7961. [CrossRef] [PubMed] [Google Scholar]
  • Somers T. C., 1971. The polymeric nature of wine pigments. Phytochemistry, 10, 2175–2186. [CrossRef] [Google Scholar]
  • Spagna G., Pifferi P.G., Rangoni C., Mattivi F., Palmonari R., 1996. The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Res. Int., 29, 241–248. [CrossRef] [Google Scholar]
  • Sun B., Barradas T., Leandro C., Santos C., Spranger I., 2008. Formation of new stable pigments from condensation reaction between malvidin-3-glucoside and (-)-epicatechin mediated by acetaldehyde: Effect of tartaric acid concentration. Food Chem., 110, 344–351. [CrossRef] [Google Scholar]
  • Sun B., Spranger M.I., 2005. Changes in phenolic composition of Tinta Miúda red wines after 2 years of ageing in bottle: effect of winemaking technologies. Eur. Food Res. Technol., 221, 305–312. [CrossRef] [Google Scholar]
  • Timberlake C. F., Bridle P., 1976. Interactions Between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Viticult., 27, 97–105. [CrossRef] [Google Scholar]
  • Vivar-Quintana A. M., Santos-Buelga C., Rivas-Gonzalo J. C., 2002. Anthocyanin-derived pigments and colour of red wines. Anal. Chim. Acta, 458, 147–155. [CrossRef] [Google Scholar]
  • Yamagishi M., Shimoyamada Y., Nakatsuka T., Masuda K., 2010. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol., 51, 463–474. [CrossRef] [PubMed] [Google Scholar]
  • Yuan Y., Chiu L.W., Li L., 2009. Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta, 230, 1141–1153. [CrossRef] [PubMed] [Google Scholar]
  • Zhao N., Lü Y.Z., Li G.J., 2013. Characterization and three-dimensional structural modeling of humic acid via molecular mechanics and molecular dynamic simulation. Chem. Res. Chin. Univ., 29, 1180–1184. [CrossRef] [Google Scholar]
  • Zifkin M., Jin A., Ozga J.A., Zaharia L.I., Schernthaner J.P., Gesell A., Abrams S.R., Kennedy J.A., Constabel C.P., 2012. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol., 158, 200–224. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.