Open Access
Ciência Téc. Vitiv.
Volume 36, Number 2, 2021
Page(s) 104 - 115
Published online 21 September 2021
  • Ahmad Waraich E., Ahmad R., Ashraf M.Y., 2011. Role of mineral nutrition in alleviation of drought stress in plants. Australian J. Crop. Sci., 5, 764–777. [Google Scholar]
  • Altintas S., Candar S., 2012. Relations between growth, N level, NH4-N ratio of fertilizer, climatic variables, harvest time and tipburn of cos lettuce grown under the cold glasshouse. J. Food Agric. Environ., 10, 368–373. [Google Scholar]
  • Balda P., Ibáñez J., Sancha J.C., Toda F.M., 2014. Characterization and identification of minority red grape varieties recovered in Rioja, Spain. Am. J. Enol. Vitic., 65, 148–152. [CrossRef] [Google Scholar]
  • Bascom C.S., Hepler P.K., Bezanilla M., 2018. Interplay between ions, the cytoskeleton, and cell wall properties during tip growth. Plant Physiol., 176, 28–40. [PubMed] [Google Scholar]
  • Benito A., Romero I., Domínguez N., Escudero E.G., Martín I., 2013. Leaf blade and petiole analysis for nutrient diagnosis in Vitis vinifera L. cv. Garnacha tinta. Aust. J.Grape Win Res., 19, 285–298. [CrossRef] [Google Scholar]
  • Bernardo S., Dinis L. T., Machado N., Moutinho-Pereira J., 2018. Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agron. Sustain. Dev., 38, 66. [CrossRef] [Google Scholar]
  • Brataševec K., Sivilotti P., Vodopivec B.M., 2013. Soil and foliar fertilization affects mineral contents in Vitis vinifera L. cv. “Rebula” leaves. J. Plant. Nutr. Soil Sci., 13, 650–663. [Google Scholar]
  • Brunetto G., Melo G.W.B., De Toselli M., Quartieri M., Tagliavini M., 2015. The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Rev. Bras. Frutic., 37, 1089–1104. [CrossRef] [Google Scholar]
  • Carvalho A., Leal F., Matos M., Brito J.L, 2019. Heat stress tolerance assayed in four wine-producing grapevine varieties using a cytogenetic approach. Ciência Téc. Vitiv. 34, 61–70. [CrossRef] [Google Scholar]
  • Cakmak I., 2005. Role of mineral nutrients in tolerance of crop plants to environmental stress factors. Fertigation Proceedings: Selected Papers of the IPI-NATESC-CAU-CAAS. International Symposium on Fertigation. Beijing-China. 20-24 September. Available at: Fertigation_Symposium_China_Sept_05_p1-7.pdf (accessed on 11.05.2021). [Google Scholar]
  • Cakmak I., Hengeler C., Marschner H., 1994. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J. Exp. Bot., 45, 1251–1257. [CrossRef] [Google Scholar]
  • Cakmak I., Yazici A.M., 2010. Magnesium: A Forgotten element in crop production. Better Crops with Plant Food. 94, 23–25. [Google Scholar]
  • Cancela J.J., Fandiño M., González X.P., Rey B.J., Mirás-Avalos A.J. M., 2018. Seasonal variation of macro and micronutrients in blades and petioles of Vitis vinifera L. cv. Mencía and Sousón. J. Plant. Nutr. Soil Sci., 181, 498–515. [CrossRef] [Google Scholar]
  • Candar S., Alço T., Yaşasın A.S., Korkutal İ., Bahar E., 2019a. Evaluation of long term changes for viticultural climate indices in Turkey Thrace (in Turkish with English abstract). COMU Agri., 7, 259–268. [Google Scholar]
  • Candar S., Bahar E., Korkutal İ., Alço T., Uysal Seçkin G., 2019b. The effects of different green pruning practices on oenological properties of Merlot (Vitis vinifera L.) grape juice (in Turkish with English abstract). Mediterr. Agric. Sci., 32, 121–127. [Google Scholar]
  • Christiansen P., 2005. Use of tissue analysis in viticulture. Proceedings of Varietal Winegrape Production Short Course University of California Davis Extension, 30-37. Available at: (accessed on 11.05.2021). [Google Scholar]
  • Dami I., Smith M., 2019. Grapevine Nutrient Management: Petiole Sampling and Analysis. Ohio State University Extension. Available at: (accessed on 11.05.2021). [Google Scholar]
  • Davies C., Shin R., Liu W., Thomas M.R., Schachtman D.P., 2006. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J. Exp. Bot., 57, 3209–3126. [PubMed] [Google Scholar]
  • Ding L., Lu Z., Gao L., Guo S., Shen Q., 2018. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front. Plant Sci., 9, 1–12. [Google Scholar]
  • Domagała-Swiątkiewicz I., Gąstoł M., Kiszka A., 2019. Effect of nitrogen and potassium fertilization on the magnesium content in vineyard soil, and in the leaves and berries of Bianca and Sibera grapevine cultivars. J. Elem., 24, 755–769. [Google Scholar]
  • Dundon C.G., Smart R., McCarthy M., 1984. The effect of potassium fertilizer on must and wine potassium levels of Shiraz grapevines. Am. J.Enol .Vitic., 35, 200–205. [Google Scholar]
  • Edwards, E.J., Downie A.F., Clingeleffer, P.R., 2011. A simple microplate assay to quantify nonstructural carbohydrates of grapevine tissues. Am. J .Enol. Vitic., 62, 133–137. [CrossRef] [Google Scholar]
  • Ergül A., Perez-Rivera G., Söylemezoğlu G., Kazan K., Arroyo-Garcia R., 2011. Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. Plant Genet. Resour., 9, 375–383. [CrossRef] [Google Scholar]
  • Esteban M.A., Villanueva M.J., Lissarrague, J.R., 2001. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L) grape berries during ripening. J. Sci. Food Agric., 81, 409–420. [CrossRef] [Google Scholar]
  • Fraga H., Atauri I.G.C., Malheiro A.C., Santos J.A., 2016. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Change Biol., 22, 3774–3788. [CrossRef] [Google Scholar]
  • Garcia M., Daverede C., Gallego P., Toumi M., 1999. Effect of various potassium-calcium ratios on cation nutrition of grape grown hydroponically. J. Plant Nutr., 22, 417–425. [CrossRef] [Google Scholar]
  • He M., Dijkstra F.A., 2014. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytol., 204, 924–931. [PubMed] [Google Scholar]
  • Helwi P., Thibon C., Habran A., Hilbert G., Guillaumie S., Delrot S., Darriet P., Van Leeuwen C., 2015. Effect of vine nitrogen status, grapevine variety and rootstock on the levels of berry S-glutathionylated and S-cysteinylated precursors of 3-sulfanylhexan-1-ol. J. Int. Sci. Vigne. Vin., 49, 253–265. [Google Scholar]
  • Hoagland D.R., Arnon D.I., 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347. Available at: p (accessed on 21.06.2021). [Google Scholar]
  • Ilahi W.F.F., Ahmad D., 2017. A study on the physical and hydraulic characteristics of cocopeat perlite mixture as a growing media in containerized plant production. Sains Malays., 46, 975–980. [CrossRef] [Google Scholar]
  • Inal A., Günes A., Alpaslan M., Adak M.S., Taban S., Eraslan F., 2003. Diagnosis of sulfur deficiency and effects of sulfur on yield and yield components of wheat grown in central Anatolia, Turkey. J. Plant Nutr., 26, 1483–1498. [Google Scholar]
  • Klein I., Strime M., Fanberstein L., Mani Y., 2000. Irrigation and fertigation effects on phosphorus and potassium nutrition of wine grapes. Vitis, 39, 55–62. [Google Scholar]
  • Kodur S., Tisdall J.M., Clingeleffer P.R., Walker R., 2013. Regulation of berry quality parameters in ‘Shiraz’ grapevines through rootstocks (Vitis). Vitis, 53, 125–128. [Google Scholar]
  • Korres N.E., Norsworthy J.K., Tehranchian P., Gitsopoulos T.K., Loka D.A., Oosterhuis D.M., Gealy D.R., Moss S.R., Burgos N.R., Miller R.M., Palhano M., 2016. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev., 36, 11–22. [Google Scholar]
  • Ksouri R., Gharsalli M., Lachaal M., 2005. Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency. J. Plant Physiol., 162, 335–341. [PubMed] [Google Scholar]
  • Kuwahara F.A., Souza G.M., Guidorizi K.A., Costa C., Meirelles P.R. de L., 2016. Phosphorus as a mitigator of the effects of water stress on the growth and photosynthetic capacity of tropical C4 grasses. Acta Sci. Agron., 38, 363–370. [Google Scholar]
  • Leibar U., Pascual I., Aizpurua A., Morales F., Unamunzaga O., 2017. Grapevine nutritional status and K concentration of must under future expected climatic conditions texturally different soils. J. Soil Sci. Plant Nutr., 17, 385–397. [Google Scholar]
  • Livigni S., Lucini L., Sega D., Navacchi O., Pandolfini T., Zamboni A., Varanini, Z., 2019. The different tolerance to magnesium deficiency of two grapevine rootstocks relies on the ability to cope with oxidative stress. BMC Plant Biol., 19, 1–17. [PubMed] [Google Scholar]
  • Lorenz D.H., Eichhorn K.W., Bleiholder H., Klose R., Meier U., Weber E., 1995. Growth stages of the grapevine: phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) - Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res., 1, 100–103. [Google Scholar]
  • Martínez, E.M., Rey, B.J., Fandiño, M., Cancela, J.J., 2016. Impact of water stress and nutrition on Vitis vinifera cv. ‘Albariño’: Soil-plant water relationships, cumulative effects and productivity. Span. J. Agric. Res., 14, 2–15. [Google Scholar]
  • Martins V., Cunha A., Gerós H., Hanana M., Blumwald E., 2012. Mineral compounds in the grape berry. In: The Biochemistry of the grape berry. 23–43. Gerós H., Chaves M.M., Delrot S. (eds.). Bentham Science Publishers Ltd. [Google Scholar]
  • Oertel C., Matschullat J., Zurba K., Zimmermann F., Erasmi S., 2016. Greenhouse gas emissions from soils-A review. Geochemistry, 76, 327–352. [Google Scholar]
  • Paustian K., Lehmann J., Ogle S., Reay D., Robertson G.P., Smith P., 2016. Climate-smart soils. Nature 532, 49–57. [CrossRef] [PubMed] [Google Scholar]
  • Romero P., Fernández J.I., Martinez-Cutillas A., 2012. Physiological thresholds for efficient regulated deficit irrigation management in winegrapes under semiarid conditions: Soil-plant-water relationships and berry composition. Acta Hortic., 931, 171–178. [Google Scholar]
  • Rouphael Y., Cardarelli M., Schwarz D., Franken P., Colla G., 2012. Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Plant Responses to Drought Stress. 171–195. Aroca R. (ed.) Springer, Berlin. [Google Scholar]
  • Santos J.A., Fraga H., Malheiro A.C., Moutinho-Pereira J., Dinis L.T., Correia C., Moriondo M., Leolini L., Dibari C., Costafreda-Aumedes S., Kartschall T., Menz C., Molitor D., Junk J., Beyer M., Schultz H.R., 2020. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci., 10, 3092. [Google Scholar]
  • Sardans J., Peñuelas J., 2012. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol., 160, 1741–1761 [PubMed] [Google Scholar]
  • Schreiner R.P., Scagel C.F., Baham J., 2006. Nutrient uptake and distribution in a mature “Pinot noir” vineyard. HortScience, 41, 336–345. [Google Scholar]
  • Schreiner R.P., Scagel C.F., 2017. Leaf blade versus petiole nutrient tests as predictors of nitrogen, phosphorus, and potassium status of ‘Pinot noir’ grapevines. HortScience, 52, 174–184. [Google Scholar]
  • Thor K., 2019. Calcium-nutrient and messenger. Front. Plant Sci., 10, 1–7. [PubMed] [Google Scholar]
  • Tóth J.P., Végvári Z., 2016. Future of winegrape growing regions in Europe. Aust. J. Grape Wine Res., 22, 64–72. [Google Scholar]
  • Trifilò P., Nardini A., Raimondo F., Lo Gullo M.A., Salleo S., 2011. Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis. Func. Plant Biol., 38, 606–613. [Google Scholar]
  • Villette J., Cuéllar T., Verdeil J.L., Delrot S., Gaillard I., 2020. Grapevine potassium nutrition and fruit quality in the context of climate change. Front. Plant Sci., 11, 1–9. [PubMed] [Google Scholar]
  • White P.J., Broadley M.R., 2003. Calcium in plants. Ann. Bot., 92, 487–511. [CrossRef] [PubMed] [Google Scholar]
  • Wilkinson S., Bacon M.A., Davies, W.J., 2007. Nitrate signalling to stomata and growing leaves: Interactions with soil drying, ABA, and xylem sap pH in maize. J. Exp. Bot., 58, 1705–1716. [PubMed] [Google Scholar]
  • Yılmaz F., Shidfar M., Hazrati N., Kazan K., Yüksel C.Ö., Uysal T., Özer C., Yaşasın A.S., Söylemezoğlu G., Boz Y., Çelik H., Ergül A., 2020. Genetic analysis of central Anatolian grapevine (Vitis vinifera L.) germplasm by simple sequence repeats. Tree Genet. Genomes., 16, 1–11. [Google Scholar]
  • Zamudio F.D, Laytte R., Grallert C., Gamboa G.G., 2021. Nutritional status differentially affect yield and must composition of hybrids and V. vinifera varieties established under cold climate conditions. Ciência Téc. Vitiv., 36, 89–103. [Google Scholar]
  • Zhao F., Tausz M., De Kok L.J., 2008. Role of sulfur for plant production in agricultural and natural ecosystems. In: Sulfur metabolism in phototrophic organisms. 417–435. Hell R., Dahl C., Knaff D., Leustek T. (eds.). Springer, Dordrecht. [Google Scholar]
  • Zlámalová T., Elbl J., Baroň M., Bělíková H., Lampíř L., Hlušek J., Lošák T., 2015. Using foliar applications of magnesium and potassium to improve yields and some qualitative parameters of vine grapes (Vitis vinifera L.). Plant Soil Environ., 61, 451–457. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.