Open Access
Issue
Ciência Téc. Vitiv.
Volume 36, Number 2, 2021
Page(s) 116 - 125
DOI https://doi.org/10.1051/ctv/ctv20213602116
Published online 04 October 2021
  • Al Juhaimi F., Geçgel Ü., Gülcü M., Hamurcu M., Özcan M.M., 2017. Bioactive properties, fatty acid composition and mineral contents of grape seed and oils. S. Afr. J. Enol. Vitic., 38, 3–108. [Google Scholar]
  • AOAC, 2005. Association Official Analytical Chemist, Official Methods of Analysis. 18th edition, Horwitz W., Latimer GW. (ed.), AOAC International, Gaithersburg, Maryland. [Google Scholar]
  • Apak R., Guclu K., Ozyurek M., Karademir S.E., 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 52, 7970–7981. [CrossRef] [PubMed] [Google Scholar]
  • Bakkalbaşı E., Yemiş O., Aslanova D., Artik N., 2005. Major flavan-3-ol composition and antioxidant activity of seeds from different grape cultivars grown in Turkey. Eur. Food Res. Technol., 221, 792–797. [CrossRef] [Google Scholar]
  • Baydar N.G., Babalık Z., Türk F.H., Çetin E.S., 2011. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. J. Agric. Sci., 17, 67–76. [Google Scholar]
  • Baydar N.G., Özkan G., Çetin E.S., 2007. Characterization of grape seed and pomace oil extracts. Grasas y Aceites, 58, 29–33. [Google Scholar]
  • Beveridge T.H.J., Girard B., Kopp T., Drover J.C.G., 2005. Yield and composition of grape seed oils extracted by supercritical carbon dioxide and petroleum ether: varietal effects. J. Agric. Food Chem., 53, 1799–1804. [CrossRef] [PubMed] [Google Scholar]
  • Bozan B., Tosun G., Özcan D., 2008. Study of polyphenol content in the seeds of red grape (Vitis Vinifera L.) varieties cultivated in Turkey and their antiradical activity. Food Chem., 109, 426–430. [CrossRef] [PubMed] [Google Scholar]
  • Bucic-Kocic, A., Planinic M., Tomas S., Jakobek L., Seruga M., 2009. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int. J. Food Sci. Technol., 44, 2394–2401. [CrossRef] [Google Scholar]
  • Callaghan C.M., Leggett R.E., Levin R.M., 2013. A comparison of total antioxidant capacities of concord, purple, red, and green grapes using the CUPRAC assay. Antioxidants, 2, 257–264. [CrossRef] [Google Scholar]
  • Coklar H., 2017. Antioxidant capacity and phenolic profile of berry, seed, and skin of Ekşikara (Vitis vinifera L) grape: Influence of harvest year and altitude. Int. J. Food Prop., 20, 2017–2087. [CrossRef] [Google Scholar]
  • Da Porto C., Decorti D., Tubaro F., 2012. Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Ind. Crops Prod., 36, 401–404. [CrossRef] [Google Scholar]
  • Guendez R., Kallithraka S., Makris D.P., Kefalas P., 2005. Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity. Food Chem., 89, 1–9. [CrossRef] [Google Scholar]
  • Kim S.Y., Jeong S.M., Park W.P., Nam K.C., Ahn D.U., Lee S.C., 2006. Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem., 97, 472–479. [CrossRef] [Google Scholar]
  • Koç M., Gecgel U., Karasu S., Sivri G.T., Apaydi D., Gulcu M., Ozcan M.M., 2019. Valorisation of seeds from different grape varieties for protein. mineral. bioactive compounds content, and oil quality. Qual. Assur. Saf. Crop., 11, 351–359. [CrossRef] [Google Scholar]
  • Li H., Wang X., Li P., Li Y., Wang H., 2008. Comparative study of antioxidant activity of grape (Vitis vinifera) seed powder assessed by different methods. J. Food Drug. Anal., 16, 1–7. [Google Scholar]
  • Lima M.D., Silani I.D.V., Toaldo I.M., Correa L.C., Biasoto A.C.T., Pereira G.E., Bordignon-Luiz M.T., Ninow J.L., 2014. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil. Food Chem., 161, 94–103. [CrossRef] [PubMed] [Google Scholar]
  • Makris D.P., Boskou G., Andrikopoulos N.K., 2007. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal., 20, 125–132. [CrossRef] [Google Scholar]
  • Mandic A.I., Dilas S.M., Cetkovic G.S., Canadanovic-Brunet J.M., Tumbas V.T., 2008. Polyphenolic composition and antioxidant activities of grape seed extract. Int. J. Food Prop., 11, 713–726. [CrossRef] [Google Scholar]
  • Martin M.E., Grao-Cruces E, Millan-Linares M.C., Montserrat-de la Paz S., 2020. Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods, 9, 1360. [CrossRef] [Google Scholar]
  • Nakao M., Takio S., Ono K., 1998. Alkyl peroxyl radical-scavenging activity of catechins. Phytochemistry, 49, 2379–2382. [CrossRef] [PubMed] [Google Scholar]
  • Nawaz H., Shi J., Mittal G.S., Kakuda Y., 2006. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep. Purif. Technol., 48, 176–181. [CrossRef] [Google Scholar]
  • Ovcharova T., Zlatanov M., Dimitrova R., 2016. Chemical composition of seeds of four Bulgarian grape varieties. Ciência Téc. Vitiv., 31, 31–40. [CrossRef] [Google Scholar]
  • Popov M., Hejtmankova A., Kotikova Z., Stralkova R., Lachman J., 2017. Content of flavan-3-ol monomers and gallic acid in grape seeds by variety and year. Vitis, 56, 45–48. [Google Scholar]
  • Sabir A., Unver A., Kara Z., 2012. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.). J. Sci. Food Agric., 92, 1982–1987. [CrossRef] [PubMed] [Google Scholar]
  • Shi J., Yu H., Pohorly J., Young J.C., Bryan M., Wu Y., 2003. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J. Food Agric. Environ., 1, 42–47. [Google Scholar]
  • Singleton V.L., Rossi J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158. [Google Scholar]
  • Tangolar S.G., Özoğul Y., Tangolar S., Torun A., 2009. Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. Int. J. Food Sci. Nutr., 60, 32–39. [CrossRef] [Google Scholar]
  • Wen X., Zhu M., Hu R., Zhao J., Chen Z., Li J., Ni Y., 2016. Characterisation of seed oils from different grape cultivars grown in China. J. Food Sci. Technol., 53, 3129–3136. [CrossRef] [PubMed] [Google Scholar]
  • Yemis O., Bakkalbasi E., Artik N., 2008. Antioxidative activities of grape (Vitis vinifera) seed extracts obtained from different varieties grown in Turkey. Int. J. Food Sci. Technol., 43, 154–159. [CrossRef] [Google Scholar]
  • Yılmaz Y., Toledo R.T., 2004. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem., 52, 255–260. [CrossRef] [PubMed] [Google Scholar]
  • Zhishen J., Mengchneg T., Jianming W., 1999. The determination of flavonoids contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 64, 555–559. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.