Open Access
Ciência Téc. Vitiv.
Volume 36, Number 2, 2021
Page(s) 126 - 138
Published online 06 October 2021
  • Ahumada G.E., Catania A., Fanzone M.L., Belmonte M.J., Giordanoc C.V., González C.V., 2021. Effect of leaf-to-fruit ratios on phenolic and sensory profiles of Malbec wines from single high-wire-trellised vineyards. J Sci Food Agric., 101, 1467–1478. [CrossRef] [PubMed] [Google Scholar]
  • Alvares C.A., Stape J.L., Sentelhas P.C., de Gonçalves J.L.M., Sparovek G., 2014. Köppen’s climate classification map for Brazil. Meteorol. Z., 22, 711–728. [Google Scholar]
  • Association of Official Agricultural Chemists (AOAC). 2010. Official methods of analysis of the Association of the Agricultural Chemistis. 18ed. AOAC, Gaithersburg, MD, USA. [Google Scholar]
  • de Bem B.P., Bogo A., Everhart S., Casa R.T., Gonçalves M.J., Filho J.L.M., da Cunha I.C., 2015. Effect of Y-trellis and vertical shoot positioning training systems on downy mildew and botrytis bunch rot of grape in highlands of southern Brazil. Sci. Hortic., 185, 162–166. [Google Scholar]
  • Blancquaert E.H., Oberholster, A., Ricardo-da-Silva J.M., Deloire, A.J., 2019. Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Front. Plant Sci., 10, 1062. [CrossRef] [PubMed] [Google Scholar]
  • Costa R.R., Ferreira T.O., Lima M.A.C., 2021. Training systems, rootstocks and climatic conditions influence quality and antioxidant activity of ‘BRS Cora’ grape. Acta Sci. Agron., 43, e49054. [Google Scholar]
  • Costa R.R., Rodrigues A.A.M., Vasconcelos V.A.F., Costa J.P.D., Lima M.A.C., 2020. Trellis systems, rootstocks and season influence on the phenolic composition of ‘Chenin Blanc’ grape. Sci. Agric., 77, e20180207. [Google Scholar]
  • Creasy G.L., Creasy L.L., 2009. Grapes. Crop production Science in Horticulture. London, UK, Europe. [Google Scholar]
  • Delgado-Vargas F., Jiménez A.R., Parede-López O., 2000. Natural pigments: carotenoids, anthocyanins, and betalains – characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr., 40, 173–289. [CrossRef] [PubMed] [Google Scholar]
  • Embrapa Semiárido. 2018. Médias Anuais da Estação Agrometeorológica de Bebedouro, Petrolina-PE. Embrapa Semiárido. [Google Scholar]
  • Famiani F., Paoletti A., Proietti P., Battistelli A., Moscatello S., Cruz-Castillo J.G., Walker R.P., 2018. The occurrence of phosphoenolpyruvate carboxykinase (PEPCK) in the pericarp of different grapevine genotypes and in grape leaves and developing seeds. J. Hortic. Sci. Biotechnol., 93, 456–465. [Google Scholar]
  • Ferreira T.O., Costa R.R., Felix D.T., Andrade Neto E.R., Cruz M.M., Lima M.A.C., 2019. Quality and antioxidant potential of ‘BRS Magna’ grapes harvested in the first half of the year under different training systems and rootstocks in a tropical region. Ciênc. Agrotec., 43, e029518. [Google Scholar]
  • Francis F.J., 1982. Analysis of anthocyanins. In: Anthocyanins as food colors. 181–207. Markakis, P. (ed.), New York, NY, USA. [Google Scholar]
  • Habran A., Commisso M., Helwi P., Hilbert G., Negri S., Ollat N., Gomès E., van Leeuwen C., Guzzo F., Delrot S., 2016. Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front. Plant Sci., 7:1134. [CrossRef] [PubMed] [Google Scholar]
  • Larrauri J.A., Rupérez P., Saura-Calixto F., 1997. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem., 45, 1390–1393. [CrossRef] [Google Scholar]
  • de Leão P.C.S., Lima M.A.C., 2018. Canopy management of table grapes cultivar in tropical conditions. J. Agr. Sci. Tech., 8, 228–233. [Google Scholar]
  • de Leão P.C.S., Nunes B.T.G., Lima M.A.C., 2016. Canopy management effects on ‘Syrah’ grapevines under tropical semi-arid conditions. Sci. Agric., 73, 209–216. [Google Scholar]
  • de Leão P.C.S., de Rego J.I.S., Nascimento J.H.B., de Souza E.M.C., 2018. Yield and physicochemical characteristics of ‘BRS Magna’ and ‘Isabel Precoce’ grapes influenced by pruning in the São Francisco river valley. Cienc. Rural, 48, e20170463. [Google Scholar]
  • Lorenzo C., Badea M., Colombo F., Orgiu F., Frigerio G., Pastor R.F., Restani P., 2017. Antioxidant l of wine assessed by different in vitro methods. BIO Web Conf., 9, 04008. [Google Scholar]
  • Martínez-Lüscher J., Brillante L., Kurtural S.K., 2019. Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Front. Plant Sci., 10, 10. [CrossRef] [PubMed] [Google Scholar]
  • Martínez-Lüscher J., Sánchez-Días M., Delrot S., Aguirreolea J., Pascual I., Gomès E., 2016. Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation. Aust. J. Grape Wine Res., 22, 87–95. [Google Scholar]
  • Miller N.J., Diplock A.T., Rice-Evans C., Davies M.J., Gopinathan V., Milner A., 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci., 84, 407–412. [Google Scholar]
  • Mirás-Avalos J.M., Intrigliolo D.S., 2017. Grape composition under abiotic constrains: water stress and salinity. Front. Plant Sci., 8, 851. [CrossRef] [PubMed] [Google Scholar]
  • Nikinmaa E., Hölttä T., Hari P., Kolari P., Mäkelä A., Sevanto S., Vesala T., 2012. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ., 36, 655–669. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira J.B., Faria D.L., Duarte D.F.; Egipto R.; Luareano O., de Castro R., Pereira G.E., Ricardo-da-Silva J.M. 2018. Effect of the harvest season on phenolic composition and oenological parameters of grapes and wines cv. ‘Touriga Nacional’ (Vitis vinifera L.) produced under tropical semi-arid climate, in the state of Pernambuco, Brazil. Ciência Téc. Vitiv., 33, 145–166. [Google Scholar]
  • Padilha C.V.S., Miskinis G.A., Souza M.E.A.O., Pereira G.E., Oliveira D., Bordignon-Luiz M.T., Lima M.S., 2017. Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chem., 228, 106–115. [CrossRef] [PubMed] [Google Scholar]
  • Ribeiro T.P., Lima M.A.C., Alves, R.E., 2012. Maturação e qualidade de uvas para suco em condições tropicais, nos primeiros ciclos de produção. Pesq. Agropec. Bras., 47, 1057–1065. [Google Scholar]
  • Sánchez-Moreno C., Larrauri J.A., Saura-Calixto F., 1998. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric., 76, 270–276. [Google Scholar]
  • Sanchez-Rodriguez L.A., Spósito M.B., 2020. Influence of the trellis/training system on the physiology and production of Vitis labrusca cv. Niagara Rosada in Brazil. Sci. Hortic., 261, 109043. [Google Scholar]
  • Santos A.O., Pereira A.E., Moreira C.A., 2015. Qualidade físico-química da uva e perfil sensorial vínico para diferentes cultivares de videira submetidas à poda mecanizada. Rev. Bras. Frutic., 37, 432–441. [Google Scholar]
  • da Silva M.J.R., Paiva A.P.M., Pimentel Junior A., Sánchez C.A.P.C., Callili D., Moura M.F., Leonel S., Tecchio M.A., 2018. Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Sci. Hortic., 241, 194–200. [Google Scholar]
  • Soares J.M., Leão P.C.S., 2009. A vitivinicultura no Semiárido brasileiro. Petrolina, PE, Brasil. [Google Scholar]
  • Vogt T., Pollak P., Taryln N., Taylor L.P., 1994. Pollination- or wound-induced kaempferol accumulation in petunia stigmas enhances seed production. Plant Cell, 6, 11–23. [CrossRef] [PubMed] [Google Scholar]
  • Wang J., Ma L., Xi H., Wang L., Li S., 2015. Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in ‘Beihong’ (V. vinifera x V. amurensis). Food Chem., 168, 430–438. [CrossRef] [PubMed] [Google Scholar]
  • Yemn E.W., Willis A.J., 1954. The estimation of carbohydrate in plant extracts by anthrone. Biochem. J., 57, 504–514. [Google Scholar]
  • Zhang H., Tsao R., 2016. Dietary polyphenols, oxidative stress, antioxidant, and anti-inflammatory effects. Curr. Opin. Food Sci., 8, 33–42. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.