Open Access
Issue
Ciência Téc. Vitiv.
Volume 36, Number 2, 2021
Page(s) 139 - 150
DOI https://doi.org/10.1051/ctv/ctv20213602139
Published online 29 October 2021
  • Arvisenet G., Ballester J., Ayed C., Sémon E., Andrio, I., Le Quere J-L., Guichard E., 2019. Effect of sugar and acid composition, aroma release and assessment conditions on aroma enhancement by taste in model wines. Food Qual. Pref., 71, 172–180. [Google Scholar]
  • Arvisenet G., Guichard E., Ballester J., 2016. Taste-aroma interaction in model wines: Effect of training and expertise. Food Qual. Pref., 52, 211–221. [Google Scholar]
  • Atanasova B., Thomas-Danguin T., Langlois D., Nicklaus S., Etievant P., 2004. Perceptual interactions between fruity and woody notes of wine. Flavor Fragr. J., 19, 476–482. [Google Scholar]
  • Bajec M.R., Pickering G.J., 2008. Thermal taste, PROP responsiveness, and perception of oral sensations. Physiol. Behav., 95, 581–590. [Google Scholar]
  • Bartoshuk L.M., 2000. Comparing sensory experiences across individuals: recent psychophysical advances illuminate genetic variation in taste perception. Chem. Senses, 25, 448–456. [Google Scholar]
  • Bertelsen A., Mielby L., Alexi N., Byrne D., Kidmose U., 2020. Sweetness Enhancement by Aromas: Measured by Descriptive Sensory Analysis and Relative to Reference Scaling. Chem. Senses, 45, 293–301. [Google Scholar]
  • Diaz M., 2004. Comparison between orthonasal and retronasal flavor perception at different concentrations. Flavour. Frag. J., 19, 499–504. [Google Scholar]
  • Francis I.L., Williamson P.O., 2015. Application of consumer sensory science in wine research. Austr. J. Grape Wine Res., 21, 554–567. [Google Scholar]
  • Gawel R., Smith P.A., Cicerale S., Keast R., 2018. The mouthfeel of white wine. Crit. Rev. Food Sci. Nutr., 58, 2939–2956. [Google Scholar]
  • Green B.G., Dalton P., Cowart B., Shaffer G., Rankin K., Higgins J., 1996. Evaluating the 'Labeled Magnitude Scale' for measuring sensations of taste and smell. Chem. Senses, 21, 323–334. [Google Scholar]
  • Green B.G., George P., 2004. 'Thermal taste' predicts higher responsiveness to chemical taste and flavor. Chem. Senses, 29, 617–28. [Google Scholar]
  • Guo S., Reed D., 2001. The genetics of phenylthiocarbamide perception. Ann. Human Biol., 28, 111–142. [Google Scholar]
  • Hayes J.E., Keast R., 2011. Two decades of supertasting: Where do we stand? Physiol. Behav., 104, 1072–1074. [Google Scholar]
  • Hort J., Hollowood T.A., 2004. Controlled continuous flow delivery system for investigating taste-aroma interactions. J. Agric. Food Chem., 52, 4834–4843. [Google Scholar]
  • ISO standard 3591:1977. Sensory analysis - Apparatus - Wine-tasting glass. 3 p. International Organization for Standardization, Geneva, Switzerland. [Google Scholar]
  • Jackson R.S., 2002. Wine Tasting: A Professional Handbook (2nd ed). 519 pp. Academic Press, London, UK. [Google Scholar]
  • Jaeger S., Silva H., Lawless H., 2014. Detection thresholds of 10 odor-active compounds naturally occurring in food used a replicated forced-choice ascending methods of limits. J. Sens. Stud., 29, 43–55. [Google Scholar]
  • Jones P., Gawel R., Francis I., Waters E., 2008. The influence of interactions between major white wine components on the aroma, flavorant texture of model white wine. Food Qual. Pref., 19, 596–607. [Google Scholar]
  • Laguna L., Bartolomé B., Moreno-Arribas M.V., 2017. Mouthfeel perception of wine: Oral physiology, components and instrumental characterization. Trend. Food Sci. Technol., 59, 49–59. [Google Scholar]
  • Lesschaeve I., 2007. Sensory evaluation of wine and commercial realities: review of current practices and perspectives. Am. J. Enol. Vitic., 58, 252–258. [Google Scholar]
  • Malfeito-Ferreira M., Diako C., Ross C., 2019. Sensory and chemical characteristics of 'dry' wines awarded gold medals in an international wine competition. J. Wine Res., 30, 204–219. [Google Scholar]
  • Melis M., Errigo A., Crnjar R., Pes G.M., Tomassini-Barbarossa I., 2019. TAS2R38 bitter taste receptor and attainment of exceptional longevity. Sci. Reports, 9, 18047. [Google Scholar]
  • Nettore I. C., Maione L., Desiderio S., De Nisco E., Franchini F., Palatucci G., Ungaro P., Cantone E., Macchia P. E., Colao A., 2020. Influences of Age, Sex and Smoking Habit on Flavor Recognition in Healthy Population. Int. J. Environ. Res. Public Health, 17, 959. [Google Scholar]
  • Paissoni M., Waffo-Teguo P., Ma W., Jourdes M., Rolle L., Teissedre P.-L., 2018. Chemical and sensorial investigation of in-mouth sensory properties of grape anthocyanins. Scientific Reports, 8, 17098. [Google Scholar]
  • Parr W., 2019. Demystifying wine tasting: Cognitive psychology's contribution. Food Res. Int., 124, 230–233. [Google Scholar]
  • Pellegrino R., Hörberg T., Olofsson J., Luckett C., 2021. Duality of Smell: Route-Dependent Effects on Olfactory Perception and Language. Chem. Senses, 46, bjab025. [Google Scholar]
  • Pelonnier-Magimel E., Windholtz S., Masneuf-Pomarède I., Barbe J.-C., 2020. Sensory characterisation of wines without added sulfites via specific and adapted sensory profile. OENO One, 54, 671–685. [Google Scholar]
  • Peng M., Hautus M., Jaeger S., 2016. Methods for Fitting Olfactory Psychometric Functions: A Case Study Comparing Psychometric Functions for Individuals with a "Sensitive" or "Insensitive" Genotype for α-Ionone. Chem. Senses, 41, 771–782. [Google Scholar]
  • Pickering G.J., Kvas R., 2016. Thermal Tasting and Difference Thresholds for Prototypical Tastes in Wine Chemos. Percept., 9, 37–46. [Google Scholar]
  • Pickering G.J., Haverstock G., DiBattista D., 2006. Evidence that sensitivity to 6-n-propylthiouracil (PROP) affects perception of retro-nasal aroma intensity. J. Food Agric. Environ., 4, 15–22. [Google Scholar]
  • Pickering G.J., Hayes J., 2017. Influence of biological, experiential and psychological factors in wine preference segmentation. Austr. J. Grape Wine Res., 23, 154–161. [Google Scholar]
  • Pickering G.J., Robert G., 2006. Perception of mouthfeel sensations elicited by red wine are associated with sensitivity to 6-N-propylthiouracil. J. Sens. Stud., 21, 249–265. [Google Scholar]
  • Pickering G.J., Simunkova K., DiBattista D., 2004. Intensity of taste and astringency sensations elicited by red wines is associated with sensitivity to PROP (6-n-propylthiouracil). Food Qual. Pref., 15, 147–154. [Google Scholar]
  • Pinto M., 2021. Evaluating uncertainty in sensory analysis. A case study of the panel of tasters of the Dão Regional Wine Commission. Ciência Téc. Vitiv., 36, 22–31. [Google Scholar]
  • Pittari E., Moio L., Arapitsas P., Curioni A., Gerbi V., Parpinello G.P., Ugliano M., Piombino P., 2020. Exploring olfactory-Oral cross-modal interactions through sensory and chemical characteristics of italian red wines. Foods, 9, 1530. [Google Scholar]
  • Poinot P., Arvisenet G., Ledauphin J., Gaillard J.-L., Prost C., 2013. How can aroma-related cross-modal interactions be analysed? A review of current methodologies. Food Qual. Pref., 28, 304–316. [Google Scholar]
  • Pomarici E., Lerro M., Chrysochou P., Vecchio R., Krystallis A., 2017. One size does (obviously not) fit all: Using product attributes for wine market segmentation. Wine Econ. Polic., 6, 98–106. [Google Scholar]
  • Prescott J., Swain-Campbell N., 2000. Responses to repeated oral irritation by capsaicin, cinnamaldehyde and ethanol in PROP tasters and non-tasters. Chem. Senses, 25, 239–246. [Google Scholar]
  • Rinaldi A., Moio L., 2018. Effect of enological tannin addition on astringency subqualities and phenolic content of red wines. J. Sens. Stud., 33, e12325xs. [Google Scholar]
  • Robino A., Concas M.P., Spinelli S., Pierguidi L., Tepper B. J., Gasparini P., Prescott J., Monteleone E., Toschi, T.G., Pagliarini E., Gasperi F., Dinnella C., 2022. Combined influence of TAS2R38 genotype and PROP phenotype on the intensity of basic tastes, astringency and pungency in the italian taste project. Food Qual. Prefer., 95, 104361. [Google Scholar]
  • Sáenz-Navajas M., Ferrero-del-Teso S., Jeffery D.W., Ferreira V., Fernández-Zurbano P., 2020. Effect of aroma perception on taste and mouthfeel dimensions of red wines: Correlation of sensory and chemical measurements. Food Res. Int., 131, 108945. [Google Scholar]
  • Sáenz-Navajas M., Campo E., Fernández-Zurbano P., Valentin D., Ferreira V., 2010. An assessment of the effects of wine volatiles on the perception of taste and adstringency in wine. Food Chem., 121, 1139–1149. [Google Scholar]
  • Santos-Buelga C., González-Manzano S., González-Paramás A.M., 2021. Wine, polyphenols, and mediterranean diets. what else is there to say? Molecules, 26, 5537. [Google Scholar]
  • Sereni A., Osborne J., Tomasino E., 2016. Exploring Retro-Nasal Aroma's Influence on Mouthfeel Perception of Chardonnay Wines. Beverages, 2, 7. [Google Scholar]
  • Singh N., Shaik F.A., Myal Y., Chelikani P., 2020. Chemosensory bitter taste receptors T2R4 and T2R14 activation attenuates proliferation and migration of breast cancer cells. Mol. Cell. Biochem, 465, 199–214. [Google Scholar]
  • Small D., 2012. Flavor is in the brain. Physiol. Behav., 107, 540–552. [Google Scholar]
  • Tepper B.J., 2008. Nutritional implications of genetic taste variation: The role of PROP sensitivity and other taste phenotypes Ann. Rev.Nutrit., 28, 367–388. [Google Scholar]
  • Tepper B.J., Christensen C.M., Cao J., 2001. Development of brief methods to classify individuals by PROP taster status. Physiol. Behav., 73, 571–577. [Google Scholar]
  • Wang Q.J., Mielby L.A., Junge J.Y., Bertelsen A.S., Kidmose U., Spence C., Byrne D.V., 2019. The Role of Intrinsic and Extrinsic Sensory Factors in Sweetness Perception of Food and Beverages: A Review. Foods, 8, 211. [Google Scholar]
  • Webb J., Bolhuis D., Cicerale S., Hayes J., Keast R., 2015. The relationships between common measurements of taste function. Chem. Percep., 8, 11–18. [Google Scholar]
  • Williams J., Bartoshuk L., Fillingim R., Dotson C., 2016. Exploring Ethnic Differences in Taste Perception. Chem. Senses, 41, 449–456. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.