Open Access
Review
Issue
Ciência Téc. Vitiv.
Volume 36, Number 1, 2021
Page(s) 75 - 88
DOI https://doi.org/10.1051/ctv/ctv2021360175
Published online 17 June 2021
  • Alsina M., De Herralde F., Aranda X., Save R., Biel C., 2007. Water relations and vulnerability to embolism are not related: experiments with eight grapevine cultivars. Vitis, 46, 1–6. [Google Scholar]
  • Atak A., Kahraman K.A. and Soylemezoglu G., 2014. Ampelographic identification and comparison of some table grape (Vitis vinifera L.) clones. N.Z. J. Crop. Hort. Sci., 42, 77–86. [CrossRef] [Google Scholar]
  • Bernard A.C., 1978. Évolution de la structure histologique du limbe du Vitis vinifera cultivar ‘Carignan’ au cours du cycle végétatif. France Viticole, 10, 72–185. [Google Scholar]
  • Bodor P., Szekszárdi A., Bisztray G.D., Bálo B., 2018. Landmark-based morphometry reveals phyllometric diversity along the shoot axis of the grapevine (Vitis vinifera L.). Prog. Agric. Eng. Sci., 1, 1–9. [Google Scholar]
  • Bodor P., Szekszárdi A., Varga Z., Bálo B., 2019. Investigation of the stomata size and frequency of grapevine (Vitis vinifera L.) cultivar ‘Kékfrankos’. Columella - J. Agri. Environ. Sci., 6, 29–34. [Google Scholar]
  • Boso S., Alonso-Villaverde V., Santiago J.J., Gago P., Dürrenberger M., Düggelin M., Kassenmeyer H.H., Martinez M.C., 2010. Macro-and microscopic leaf characteristics of six grapevine genotypes (Vitis spp.) with different susceptibilities to grapevine downy mildew. Vitis, 49, 43–50. [Google Scholar]
  • Boso S., Gago P., Alonso-Villaverde V., Santiago J.J., Mendez J., Pazos I., Martinez M.C., 2011. Variability at the electron microscopy level in leaves of members of the genus Vitis. Sci. Hortic., 128, 228–238. [CrossRef] [Google Scholar]
  • Bota J., Flexas J., Medrano H., 2001. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol., 138, 353–361. [CrossRef] [Google Scholar]
  • Brodersen C.R., McElrone A.J., Choat B., Lee E.F., Shackel K.A., Matthews M.A., 2013a. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol., 161, 1820–1829. [CrossRef] [Google Scholar]
  • Brodersen C.R., Choat B., Chatelet D.S., Shackel K.A., Matthews M.A., McElrone A.J., 2013b. Xylem vessel relays contribute to radial connectivity in grapevine stems (Vitis Vinifera and V. Arizonica; Vitaceae). Am. J. Bot., 100, 314–321. [CrossRef] [Google Scholar]
  • Brodribb T.J. and Cochard H., 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol., 149, 575–584. [CrossRef] [PubMed] [Google Scholar]
  • Cabello F., Ortiz J.M., Muñoz G., Rodríguez I., Benito A., Rubio C., García S., 2011. Variedades de vid en España, Agrícola Española-IMIDRA: Madrid, Spain. [Google Scholar]
  • Cai J., Tyree M.T., 2010. The impact of vessel size on vulnerability curves: Data models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ., 33, 1059–1069. [PubMed] [Google Scholar]
  • Chalk L., Chattaway M.M., 1933. Perforated ray cells. Proc. R. Soc. Lond., 113, 82–92. [Google Scholar]
  • Chavarria G., Pessoa dos Santos H., Suita de Castro L.A., Marodin G.A.B., Bergamaschi H., 2012. Anatomy, chlorophyll content and photosynthetic potential in grapevine leaves under plastic cover. Rev. Bras. Frutic., 34, 661–668. [CrossRef] [Google Scholar]
  • Chaves M.M., Rodrigues M.L., 1987. Photosynthesis and water relations of grapevines growing in Portugal response to environmental factors. In: Plant response to stress functional analysis in Mediterranean ecosystems. 379–390. J.D. Tenhunen, F.M. Catarino, O.L. Lange, W.C. Oechel (eds.), Springer – Verlag, Berlin. [CrossRef] [Google Scholar]
  • Chaves M.M., Santos T.P., Souza C.R., Ortuno M.F., Rodrigues M.L., Lopes C.M., Maroco J.O., Pereira J.S., 2007. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol., 150, 237–252. [CrossRef] [Google Scholar]
  • Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M., 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Ann. Bot., 105, 661–676. [CrossRef] [PubMed] [Google Scholar]
  • Chaves M.M., Costa J.M., Zarrouk O., Pinheiro C., Lopes C.M., Pereira J.S., 2016. Controlling stomatal aperture in semi-arid regions – The dilemma of saving water or being cool? Plant Sci., 251, 54–64. [CrossRef] [PubMed] [Google Scholar]
  • Choat B., Jansen S., Zwieniecki M.A., Snets E., Holbrook N.M., 2004. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J. Exp. Bot., 55, 1569–1575. [CrossRef] [PubMed] [Google Scholar]
  • Choat B., Drayton W., Matthews M., Shackel K., Wada H., Mcelrone A., 2010. Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species. Plant Cell Environ., 33, 1502–1512. [PubMed] [Google Scholar]
  • Chitwood D.H., Kumar R., Headland L.R., Ranjan A., Covington M.F., Ichihashi Y., Fulop D., Jiménez-Gómez J.M., Peng J., Maloof J.N., Sinha N.R., 2013. A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell., 25, 2465–2481 [CrossRef] [PubMed] [Google Scholar]
  • Chitwood D.H., Ranjan A., Martinez C.C., Headland L.R., Thiem T., Kumar R., Covington M.F., Hatcher T., Naylor D.T., Zimmerman S., Downs N., 2014. A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiol., 164, 259–272. [CrossRef] [PubMed] [Google Scholar]
  • Chitwood D.H., Rundell S.M., Li D.Y., Woodford Q.L., Yu T.T., Lopez J.R., Greenblatt D., Kang J., Londo J.P., 2016. Climate and developmental Plasticity: Interannual Variability in Grapevine Leaf Morphology. Plant Physiol., 170, 1480–1491. [CrossRef] [PubMed] [Google Scholar]
  • Christman M.A., Sperry J.S., Adler F.R., 2009. Testing the “rare pit” hypothesis for xylem cavitation resistance in three species of Acer. New Phytol., 182, 664–674. [CrossRef] [PubMed] [Google Scholar]
  • Cochard H., Ewers F.W., Tyree M.T., 1994. Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum) – root pressures, vulnerability to cavitation and seasonal changes to embolism. J. Exp. Bot., 45, 1085–1089. [CrossRef] [Google Scholar]
  • Costa J.M., Ortuño M.F., Lopes C.M., Chaves M.M., 2012. Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct. Plant Biol. A-K. [PubMed] [Google Scholar]
  • Davis S.D., Sperry J.S., Hacke U.G., 1999. The relationship between xylem conduit diameter and cavitation caused by freezing. Am. J. Bot., 86, 1367–1372. [CrossRef] [PubMed] [Google Scholar]
  • Davis S.D., Ewers F.W., Sperry J.S., Portwood K.A., Crocker M.C., Adams G.C., 2002. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. Am. J. Bot., 89, 820–828. [CrossRef] [PubMed] [Google Scholar]
  • Dhanyalakshmi, K.H., Soolanayakanahally, R.Y., Rahman, T., Tanino, K.K. and Nataraja, K.N., 2019. Leaf Cuticular Wax, a Trait for Multiple Stress Resistance in Crop Plants. In: Abiotic and Biotic Stress in Plants. Oliveira A.B. (ed.), IntechOpen. https://www.intechopen.com/books/abiotic-and-biotic-stress-in-plants/leaf-cuticular-wax-a-trait-for-multiple-stress-resistance-in-crop-plants (accessed on 10.05.2021). [Google Scholar]
  • Dickison W.C., 2000. Integrative Plant Anatomy. Harcourt Academic Press, San Diego. [Google Scholar]
  • Dinis L.-T., Correia C.M., Ferreira H.F., Gonçalves B., Gonçalves I., Coutinho J.F., Ferreira M.I., Malheiro A.C., Moutinho-Pereira J., 2014. Physiological and biochemical responses of Semillon and Muscat Blanc à Petits Grains winegrapes grown under Mediterranean climate. Sci. Hortic., 175, 128–138. [CrossRef] [Google Scholar]
  • Domínguez E., Heredia-Guerrero J.A., Heredia A., 2011. The biophysical design of plant cuticles: An overview. New Phytol., 189, 938–949. [CrossRef] [PubMed] [Google Scholar]
  • Doupis G., Bosabalidis A.M., Patakas A., 2016. Comparative effects of water deficit and enhanced UV-B radiation on photosynthetic capacity and leaf anatomy traits of two grapevine (Vitis vinifera L) cultivars. Theor. Exp. Plant Physiol., 28, 131–141. [CrossRef] [Google Scholar]
  • Duering H., 1980. Stomata frequency of leaves of Vitis species and cultivars. Vitis, 19, 91–98. [Google Scholar]
  • Edelmann H.G., Neinhuis C., Bargel H., 2005. Influence of hydration and temperature on the rheological properties of plant cuticles and their impact on plant organ integrity. J. Plant Growth Regul., 24, 116–126. [CrossRef] [Google Scholar]
  • Ennajeh M., Vadel A.M., Cochard H., Khemira H., 2010. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J Hortic. Sci. Biotech., 85, 289–294. [CrossRef] [Google Scholar]
  • Esau K., 1965. Plant Anatomy. New York, NY: Wiley. [Google Scholar]
  • Esau K., 1977. Anatomy of seed plants. 2nd ed. John Wiley & Sons Inc, New York. [Google Scholar]
  • Escalona J.M., Flexas J., Medrano H., 1999. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Aust. J. Plant Physiol. 26, 421–433. [Google Scholar]
  • Ewers F.W., Fisher J.B., 1989. Techniques for measuring vessel lengths and diameters in stems of woody plants. Am. J. Bot., 76, 645–656. [CrossRef] [Google Scholar]
  • FAO-OIV, 2016. Focus 2016. Table and dried grapes. FAO-OIV. Rome. Food and Agriculture Organization of the United Nations. [Google Scholar]
  • Fahn A., 1986. Structural and functional properties of trichomes of xeromorphic leaves. Ann. Bot., 57, 631–637. [CrossRef] [Google Scholar]
  • Flexas, J., Bota, J., Escalona, J.M., Sampol, B., Medrano, H, 2002. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct. Plant Biol., 29, 461–471. [CrossRef] [PubMed] [Google Scholar]
  • Flexas J., Galmés J., Gallé A., Gulias J., Pou A., Ribas-Carbo M., Tomás M., Medrano H., 2010. Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res., 16, 106–121. [CrossRef] [Google Scholar]
  • Fraga H., Santos J.A., Malheiro A.C., Oliveira A.A., Moutinho-Pereira J., Jones G.V., 2016. Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Climatol., 36, 1–12. [Google Scholar]
  • Gago P., Conéjéro G., Martínez M.C., Boso S., This P., Verdeil J.-L., 2016. Microanatomy of leaf trichomes: opportunities for improved ampelographic discrimination of grapevine (Vitis Vinifera L.) cultivars. Aust. J. Grape Wine Res., 22, 494–503. [CrossRef] [Google Scholar]
  • Gago P., Conejero G., Martínez M.C., This P., Verdeil J.L., 2019. Comparative Anatomy and Morphology of the Leaves of ‘ renache Noir’ and ‘Syrah’ Grapevine Cultivars. S. Afr. J. Enol. Vitic., 40, 1–9. [Google Scholar]
  • Galet P., 2000. Dictionnaire Encyclopédique des Cépages. Hachette. Paris. [Google Scholar]
  • Gerzon E., Biton I., Yaniv Y., Zemach H., Netzer Y., Schwartz A., Fait A., Ben-Ari G., 2015. Grapevine anatomy as a possible determinant of isohydric or anisohydric behavior. Am. J. Enol. Vitic., 66, 340–347. [CrossRef] [Google Scholar]
  • Gómez-del-Campo M., Ruiz C., Baeza P., Lissarrague J.R., 2003. Drought adaptation strategies of four grapevine cultivars (Vitis vinifera L.): modification of the properties of the leaf area. J. Int. Sci. Vigne Vin, 37, 131–143. [Google Scholar]
  • Gürsöz S., 1993. A Study on the Determination of Ampelographic Characteristics and Yield and Quality Components of Grape Cultivars Grown in Southeastern Anatolia Region and especially in Şanlıurfa Province. Thesis, Çukurova University, Agriculture Faculty, Adana. [Google Scholar]
  • Hargrave K.R., Kolb K.J., Ewers F.W., Davis S.D., 1994. Conduit diameter and embolism (Labiatae) in Salvia mellifera. New Phytol., 126, 695–705. [CrossRef] [Google Scholar]
  • Haworth M., Marino G., Loreto F., Centritto M., 2021. Integrating stomatal physiology and morphology: evolution of stomatal control and evolution of future crops. Oecologia. https://doi.org/10.1007/s00442-021-04857-3. [PubMed] [Google Scholar]
  • Hochberg U., Degu A., Gendler T., Fait A., Rachmilevitch S., 2014. The variability in the xylem architecture of grapevine petiole and its contribution to hydraulic differences. Funct. Plant Biol., 42, 357–365. [CrossRef] [Google Scholar]
  • Hochberg U., Albuquerque C., Rachmilevitch S., Cochard H., David-Schwartz R., Brodersen C.R., McElrone A., Windt C.W., 2016. Grapevine petioles are most sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. Plant Cell Environ., 39, 1886–1894. [CrossRef] [PubMed] [Google Scholar]
  • Hochberg U., Bonel A.G., David-Schwartz R., Degu A., Fait A., Cochard H., Peterlunger E., Herrera J.C., 2017. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability. Planta, 245, 1091–1104. [CrossRef] [PubMed] [Google Scholar]
  • Hopper D.W., Ghan R., Cramer G.R., 2014. A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes. Hortic. Res., 1, 1–8. [CrossRef] [PubMed] [Google Scholar]
  • Jacobsen A.L., Pratt R.B., 2012. No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesseled liana (Vitis Vinifera). New Phytol., 194, 982–990. [CrossRef] [PubMed] [Google Scholar]
  • Jacobsen A.L., Rodriguez-Zaccaro F.D., Lee T.F., Valdovinos J., Toschi H.S., Martinez J.A., 2015. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst., 4, 97–115. [Google Scholar]
  • Jones H.G., 1990. Physiological aspects of the control of water status in horticultural crops. HortScience, 25, 19–26. [CrossRef] [Google Scholar]
  • Jones H.G., 2014. Drought and other abiotic stresses. In: Plants and microclimate: A quantitative approach to environmental plant physiology. 255–289. 3rd Ed., Cambridge University Press, Cambridge, UK, [Google Scholar]
  • Karabourniotis G., Kotsabassidis D., Manetas Y., 1995. Trichome density and its protective potential against ultra- violet-B radiation damage during leaf development. Can. J. Bot., 73, 376–383. [CrossRef] [Google Scholar]
  • Keller M. and Koblet W., 1995. Dry matter and leaf area partitioning, bud fertility and second season growth of Vitis vinifera L.: Responses to nitrogen supply and limiting irradiance. Vitis – Geilweilerhof, 34, 77–83. [Google Scholar]
  • Keller M., 2005. Deficit irrigation and vine mineral nutrition. Am. J. Enol. Vitic., 56, 267–283. [Google Scholar]
  • Keller M., 2010. The science of grapevines In: Anatomy and physiology. Academic Press/Elsevier. 1st Edition, Burlington, MA. 377 p. [Google Scholar]
  • Knipfer T., Barrios-Masias F.H., Cuneo I.F., Bouda M., Albuquerque C.P., Brodersen C.R., Kluepfel D.A., McElrone A.J., 2018. Variations in xylem embolism susceptibility under drought between intact saplings of three walnut species. Tree Physiol., 38, 1180–1192. [CrossRef] [PubMed] [Google Scholar]
  • Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E., Scharf K.D., 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., 10, 310–316. [CrossRef] [PubMed] [Google Scholar]
  • Koundouras S., Tsialtas I.T., Zioziou E., Nikolaou N., 2008. Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. ‘Cabernet-Sauvignon’) under contrasting water status: leaf physiological and structural responses. Agr. Ecosyst. Environ., 128, 86–96. [CrossRef] [Google Scholar]
  • Kursar T.A., Engelbrecht B.M.J., Burke A., Tyree M.T., El Omari B., Giraldo J.P., 2009. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol., 23, 93–102. [CrossRef] [Google Scholar]
  • Langlade N.B., Feng X., Dransfield T., Copsey L., Hanna A.I., Thébaud C., Bangham A., Hudson A., Coen E., 2005. Evolution through genetically controlled allometry space. Proc. Natl. Acad. Sci. U.S.A., 102, 10221–10226. [CrossRef] [Google Scholar]
  • Levin D.A., 1973. The role of trichomes in plant defense. The Quarterly Review of Biology, UCP, 48, 3–15. [CrossRef] [Google Scholar]
  • Liakopoulos G., Nikolopoulos D., Klouvatou A., Vekkos K.A., Manetas Y., Karabourniotis G., 2006. The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis Vinifera). Ann. Bot., 98, 257–265. [CrossRef] [PubMed] [Google Scholar]
  • Lopes C.M., Pinto P.A., 2005. Easy and accurate estimation of grapevine leaf area with simple mathematical models. Vitis, 44, 55–61. [Google Scholar]
  • Lopes C.M., Santos T., Monteiro A., Rodrigues M.L., Costa J.M., Chaves M.M., 2011. Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Scientia Horticulturae, 129, 603–612. [CrossRef] [Google Scholar]
  • Lopes C.M., Egipto R., Zarrouk O., Chaves M.M., 2020. Carry-over effects on bud fertility makes early defoliation a risky crop-regulating practice in Mediterranean vineyards. Aust. J. Grape Wine Res., 26, 290–299. [CrossRef] [Google Scholar]
  • Lovisolo, C., Schubert, A., 1998. Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J. Exp. Bot., 49, 693–700. [CrossRef] [Google Scholar]
  • Lovisolo C., Hartung W., Schubert A., 2002. Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Funct. Plant Bio., 29, 1349–1356. [CrossRef] [PubMed] [Google Scholar]
  • Lovisolo C., Perrone I., Hartung W., Schubert A., 2008. An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol., 180, 642–651. [CrossRef] [PubMed] [Google Scholar]
  • Lovisolo C., Perrone I., Carra A., Ferrandino A., Flexas J., Medrano H., Schubert A., 2010. Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Funct. Plant Biol., 37, 98–116. [CrossRef] [Google Scholar]
  • Martin J.T., Juniper B.E., 1970. The cuticles of plants. Arnold Publ., London, UK. [Google Scholar]
  • McDowell N., Pockman W.T., Allen C.D., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol., 178, 719–739. [CrossRef] [PubMed] [Google Scholar]
  • Medrano, H., Escalona, J.M., Cifre, J., Bota, J. and Flexas, J., 2003. A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Funct. Plant Biol., 30, pp.607–619. [CrossRef] [PubMed] [Google Scholar]
  • Medri M.E., Lleras E., 1980. Aspectos da anatomia ecológica de folhas de Hevea brasiliensis. Müell. Arg. Acta Amaz., 10, 463–493. [CrossRef] [Google Scholar]
  • Mendgen, K., 1996. Fungal attachment and penetration. In: Kerstiens, G. (Ed.), Plant Cuticle, pp.175–188. Bios Scientific Publishers, Oxford, UK. [Google Scholar]
  • Merev N., Gerçek Z., Serdar B., 2005. Wood anatomy of some Turkish plants with reference to perforated cells. Turk. J. Bot., 29, 269–281. [Google Scholar]
  • Mershon J.P., Becker M., Bickford C.P., 2015. Linkage between trichome morphology and leaf optical properties in New Zealand alpine Pachycladon (Brassicaceae), N. Z. J. Bot., 55, 175–182. [CrossRef] [Google Scholar]
  • Mittler R., 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci., 11, 15–19. [CrossRef] [PubMed] [Google Scholar]
  • Monteiro A., Teixeira G., Lopes C.M., 2013. Comparative leaf micromorphoanatomy of Vitis vinifera ssp. vinifera (Vitaceae) red cultivars. Ciência Téc. Vitiv., 28, 19–28. [Google Scholar]
  • Mosedale, J.R., Abernethy K.E., Smart R.E., Wilson R.J., Maclean I.M.D., 2016. Climate change impact and adaptive strategies: lessons from the grapevine. Glob. Chang. Biol., 22, 3814–3828. [CrossRef] [Google Scholar]
  • Munitz, S., Netzer, Y., Shtein, I., Schwartz, A., 2018. Water availability dynamics have long-term effects on mature stem structure in Vitis vinifera. Am. J. Bot., 105, 1443–1452. [CrossRef] [PubMed] [Google Scholar]
  • Oren R., Werk K.S., Schulze E.-D., 1986. Relationships between foliage and conducting xylem in Picea abies (L.) Karst. Trees, 1, 61–69. [CrossRef] [Google Scholar]
  • Pagay V., Zufferey V., Lakso A.N., 2016. The influence of water stress on grapevine (Vitis Vinifera L.) shoots in a cool, humid climate: growth, gas exchange and hydraulics. Funct. Plant Biol., 43, 827–837. [CrossRef] [PubMed] [Google Scholar]
  • Patakas A., Kofidis G., Bosabalidis A.M., 2003. The relationships between CO2 transfer mesophyll resistance and photosynthetic efficiency in grapevine cultivars. Sci. Hortic., 97, 225–263. [Google Scholar]
  • Pockman W.T., Sperry J.S. O’Leary J.W., 1995. Sustained and significant negative water pressure in xylem. Nature, 378, 715–716. [CrossRef] [Google Scholar]
  • Pouzoulet J., Pivovaroff A.L., Santiago L.S., Rolshausen P.E., 2014. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Front. Plant Sci., 5, 1–11. [CrossRef] [Google Scholar]
  • Pouzoulet J., Pivovaroff A.L., Scudiero E., De Guzman M.E., Rolshausen P.E., Santiago L.S., 2020.Contrasting adaptation of xylem to dehydration in two Vitis vinifera L. sub-species. Vitis, 59, 53–61. [Google Scholar]
  • Pratt C., 1974. Vegetative anatomy of cultivated grapes – a review. Am. J. Enol. Vitic., 25, 131–150. [Google Scholar]
  • Quintana-Pulido C., Villalobos-González L., Muñoz M., Franck N., Pastenes C., 2018. Xylem structure and function in three grapevine varieties. Chil. J. Agric. Res., 78, 419–428. [CrossRef] [Google Scholar]
  • Riederer M., Markstädter E., 1996. Cuticular waxes, a critical assessment of current knowledge In Kerstiens, G. (Ed.), Plant Cuticles, pp. 189–200. Bios Scientific Publishers, Oxford, UK. [Google Scholar]
  • Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S., Mittler R., 2004. When defense pathways collide: The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol., 134, 1683–1696 [CrossRef] [PubMed] [Google Scholar]
  • Rood S.B., Patino S., Coombs K., Tyree M.T., 2000. Branch sacrifice: cavitation associated drought adaptation of riparian cottonwoods. Trees – Struct. Funct., 14, 248–257. [CrossRef] [Google Scholar]
  • Royer D.L., Meyerson L.A., Robertson K.M., Adams J.M., 2009. Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum. PLoS One, 4, e7653. [CrossRef] [PubMed] [Google Scholar]
  • Sadras V.O., Montorob A., Morana M.A., Aphaloc P.J., 2012. Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine. Agr. Forest Meterol., 165, 35–42. [CrossRef] [Google Scholar]
  • Salem-Fnayou A.B., Bouamama B., Ghorbel A., Mliki A., 2011. Investigations on the leaf anatomy and ultra structure of grapevine (Vitis vinifera) under heat stress. Microsc. Res. Techniq., 74, 756–762. [CrossRef] [Google Scholar]
  • Santos J.A., Costa R., Fraga H., 2018. Climate change impacts on thermal growing conditions of Portuguese grapevine varieties In Proceedings of XII Congreso Internacional Terroir, E3S Web of Conferences 50, 01030. [Google Scholar]
  • Scharwies, J. D., Tyerman, S. D., 2017. Comparison of isohydric and anisohydric Vitis vinifera L. cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries. Funct. Plant Biol., 44, 324–338. [CrossRef] [PubMed] [Google Scholar]
  • Scholander P.F., Lowe W.E., Kanwisher J.W., 1955. The rise of sap in tall grapevines. Plant physiol., 30, 94–104. [Google Scholar]
  • Schultz H.R., 2003. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ., 26, 1393–1405. [CrossRef] [Google Scholar]
  • Schultz H.R. and Stoll M., 2010. Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust. J. Grape Wine Res., 16, 2–24. [CrossRef] [Google Scholar]
  • Serra I., Strever A., Myburgh P., Schmeisser M., Deloire P.A., 2017. Grapevine (Vitis Vinifera L. ‘Pinotage’) leaf stomatal size and density as modulated by different rootstocks and scion water status. Acta Hort., 1157, 177–181. [CrossRef] [Google Scholar]
  • Shelden M.C., Vandeleur R., Kaiser B.N., Tyerman S.D., 2017. A comparison of petiole hydraulics and aquaporin expression in an anisohydric and isohydric cultivar of grapevine in response to water-stress induced cavitation. Front. Plant Sci., 8(1893), 1–17. [CrossRef] [PubMed] [Google Scholar]
  • Shepherd T., Griffiths D.W., 2006. The effects of stress on plant cuticular waxes. New Phytol. 171: 469–499. [CrossRef] [PubMed] [Google Scholar]
  • Skelton R.P., Midgley J.J., Nyaga J.M., Johnson S.D., Cramer M.D., 2012. Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait? Aust. J. Bot., 60, 104–113. [CrossRef] [Google Scholar]
  • Smart R.E., Robinson M., 1991. Sunlight Into Wine. A Handbook for Winegrape Canopy Management. Winetitles, Adelaide. [Google Scholar]
  • Sperry J.S., Tyree M.T., 1990. Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ., 13, 427–436. [CrossRef] [Google Scholar]
  • Taiz L., Zeiger E., 2004. Fisiologia Vegetal. Artmed, Porto Alegre. [Google Scholar]
  • Teixeira G., Monteiro A., Santos C., Lopes C.M., 2018. Leaf morphoanatomy traits in white grapevine cultivars with distinct geographical origin. Ciência Téc. Vitiv., 33, 90–101. [CrossRef] [EDP Sciences] [Google Scholar]
  • Theobald W., Krauhulik J., Rollins R., 1979. Trichome description and classification In: Anatomy of Dicotyledons. Metcalfe C., Chalk L. (eds.), Vol. I. 2nd ed. pp.40–53. Oxford Univ. Press., UK [Google Scholar]
  • Tian F., Bradbury P.J., Brown P.J., Hung H., Sun Q., Flint-Garcia S., Rocheford T.R., McMullen M.D., Holland J.B., Buckler E.S., 2011. Genome wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet., 43, 159–162. [CrossRef] [PubMed] [Google Scholar]
  • Tyree M.T., Dixon M.A., 1986. Water stress induced cavitation and embolism in some woody plants. Physiol. Plant., 66, 397–405. [CrossRef] [Google Scholar]
  • Tyree M.T., Sperry J.S., 1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Plant Physiol., 88, 574–580. [CrossRef] [PubMed] [Google Scholar]
  • Viala P., Vermorel V., 1901. Ampélographie, Vol I. Masson et Cie, Paris, France. [Google Scholar]
  • Wagner G.J., Wang E., Shepherd R.W., 2004. New approaches for studying and exploiting an old proturberance, the plant trichome. Ann. Bot., 93, 3–11. [CrossRef] [PubMed] [Google Scholar]
  • Wahid A., Gelani S., Ashraf M., Foolad M.R., 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot., 61, 199–223. [CrossRef] [Google Scholar]
  • Wheeler E.A., and LaPasha C.A., 1994. Woods of the Vitaceae – Fossil and modern. Rev. Palaeobot. Palynol., 80, 175–207. [CrossRef] [Google Scholar]
  • Wheeler J.K., Sperry J.S., Hacke U.G., Hoang N., 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vessel led plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ., 28, 800–812. [CrossRef] [Google Scholar]
  • Wheeler J.K., Huggett B.A., Tofte A.N., Rockwell F.E., Holbrook N.M., 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ., 36, 1938–1949. [PubMed] [Google Scholar]
  • Yan W.M., Zhong Y.Q.W., Shangguan Z.P., 2017. Contrasting responses of leaf stomatal characteristics to climate change: A considerable challenge to predict carbon and water cycles. Global Change Biol., 23, 3781–3793. [CrossRef] [Google Scholar]
  • Ziv C., Zhao Z., Gao Y.G., Xia Y., 2018. Multifunctional role of plant cuticle during plant-pathogen interactions. Front. Plant Sci., 9, 1–8. [CrossRef] [PubMed] [Google Scholar]
  • Zufferey V., Cochard H., Ameglio T., Spring J.L., Viret O., 2011. Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. ‘Chasselas’). J. Exp. Bot., 62, 3885–3894. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.