Open Access
Ciência Téc. Vitiv.
Volume 36, Number 1, 2021
Page(s) 89 - 103
Published online 04 August 2021
  • AOAC International., 2005. Official Methods of Analysis of AOAC International 18th Edition, 2005. 4.8.02 AOAC Official Method 968.08, modified method using ICP-OES. [Google Scholar]
  • AOAC International., 2006. Official Methods of Analysis of AOAC International 18th Edition, 2005. 4.2.08 AOAC Official Method 990.03, Combustion Method. [Google Scholar]
  • Assimakopoulou A., Tsougrianis C., 2012. Correlation between yield, must attributes and nutritional status of the greek red wine grape variety “Agiorgitiko.” J. Plant Nut. 35, 1022–1036. [Google Scholar]
  • Bishop R.F., MacEachern C.R., MacLeod L.B., Jackson L. P., 1969. Effect of surface-applied limestone and superphosphate on herbage production and on some chemical properties of a Dykeland soil. Can. J. Soil Sci. 49, 47–51. [Google Scholar]
  • Bojórquez-Quintal E., Escalante-Magaña C., Echevarría-Machado I., Martínez-Estévez M., 2017. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 8, 1767. [Google Scholar]
  • Bosso A., Motta, S., Panero L., Petrozziello M., Asproudi A., Lopez R., Guaita M., 2020. Use of polyaspartates for the tartaric stabilisation of white and red wines and side effects on wine characteristics. OENO One. 54, 15–26. [Google Scholar]
  • Brdar-Jokanović M., 2020. Boron toxicity and deficiency in agricultural plants. Int. J. Mol. Sci. 21, 1424. [Google Scholar]
  • Cameron B.I., Ketter B.S., Karakis S., 2012. An emerging wine region in Nova Scotia, Canada: Terroir trials and tribulations. Am.n Geophys. Union 53, 1590. [Google Scholar]
  • Centinari M., 2018. Assessing and managing potassium concentration in the vineyard. PennState Extension. Available at: (accessed on 06.05.2021). [Google Scholar]
  • Christensen P., 1969. Seasonal changes and distribution of nutritional elements in Thomson seedless grapevines. [Google Scholar]
  • Christensen P., 1975. Long-term responses of ‘Thompson Seedless’ vines to potassium fertilizer treatment. Am. J. Enol. Vitic. 26, 179–183. [Google Scholar]
  • Christensen P., 1984. Nutrient level comparisons of leaf petioles and blades in twenty-six grape cultivars over three years (1979 through 1981). Am. J. Enol. Vitic. 35, 124–133. [Google Scholar]
  • Coulter A.D., Holdstock, M.G., Cowey, G.D., Simos C.A., Smith P.A., Wilkes E.N., 2015. Potassium bitartrate crystallisation in wine and its inhibition. Aust. J. Grape Wine Res. 21, 627–641. [Google Scholar]
  • Curie C., Cassin G., Couch D., Divol F., Higuchi K., Le Jean M., Misson J., Schikora A., Czernic P., Mari S., 2008. Metal movement within the plant. contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103(1), 1–11. [Google Scholar]
  • Fageria N.K., Nascente A. S., 2014. Management of soil acidity of South American soils for sustainable crop production. Adv. Agron. 128, 221–275. [Google Scholar]
  • Ferrara G., Malerba A.D., Matarrese A.M.S., Mondelli D., Mazzeo A., 2018. Nitrogen distribution in annual growth of “Italia” table grape vines. Front. Plant Sci. 9, 1374. [Google Scholar]
  • Fisher K.H., Jamieson A.R., 2000. L’Acadie, a cold hardy, white wine grape cultivar for low heat unit regions. Acta Hortic. 528, 563–567. [Google Scholar]
  • Gerendás J., Führs H., 2013. The significance of magnesium for crop quality. Plant Soil. 368, 101–128. [Google Scholar]
  • González M.R., Hailemichael G., Catalina Á., Martín P., 2019. Combined effects of water status and iron deficiency chlorosis on grape composition in non-irrigated vineyards. Sci. Agric. 76, 473–480. [Google Scholar]
  • Grallert C., Laytte R., 2018. Executive summary. Terroir analysis for the Nova Scotia wine growing region. Nova Scotia Department of Agriculture (NSDA). Available at: [Google Scholar]
  • Grallert C., Laytte R., 2020. Executive summary. Terroir analysis for the Nova Scotia wine growing region. Nova Scotia Department of Agriculture (NSDA). Available at: [Google Scholar]
  • Gransee A., Führs H., 2012. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 368, 5–21. [Google Scholar]
  • Gruber B., Kosegarten H., 2002. Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. J. Plant Nutr. Soil Sci. 165, 111–117. [Google Scholar]
  • Gupta U.C., Calder F.W., Macleod L. B., 1971. Influence of added limestone and fertilizers upon the micro-nutrient content of forage tissue and soil. Plant Soil. 35(1-3), 249–256. [Google Scholar]
  • Hardie W.J., Aggenbach S.J., 1996. Effects of site, season and viticultural practices on grape seed development. Aust. J. Grape Wine Res. 2, 1–4. [Google Scholar]
  • Hepner Y., Bravdo B., 1985. Effect of crop level and drip irrigation scheduling on the potassium status of Cabernet Sauvingon and Carignane vines and its influence on must and wine composition and quality. Am. J. Enol. Vitic. 36, 140–147. [Google Scholar]
  • Hilbert G., Soyer J.P., Molot C., Giraudon J., Milin S., Gaudillère, J.P., 2003. Effects of nitrogen supply on must quality and anthocyanins accumulation in berries of cv. Merlot. Vitis. 42, 69–76. [Google Scholar]
  • Huglin P., 1978. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Compt. Ren. Acad. Agric. Fr. 64, 1117–1126. [Google Scholar]
  • Jensen K.I.N., Doohan D.J., Specht E.G., 2004. Response of processing carrot to metribuzin on mineral soils in Nova Scotia. Can. J. Soil Sci. 84, 669–676. [Google Scholar]
  • Jones J.B., Wolf J.R.B., Mills H.A., 1991. Plant Analysis Handbook. Athens, GA. Micro Macro Publishing, Inc. [Google Scholar]
  • Joshi D., Chandra Srivastava P., Dwivedi R., Pratap Pachauri S., 2014. Chemical speciation of Zn in acidic soils. suitable soil extractant for assessing Zn availability to maize (Zea mays L.). Chem. Speciation Bioavailability. 26, 148–157. [Google Scholar]
  • Jones G.V., 2005. Climate and terroir. Impacts of climate variability and change on wine. Geosci. Can. 1–14. [Google Scholar]
  • Keller M., 2020. The science of grapevines. Anatomy and Physiology. 3rd Edition. Elsevier. Academic Press. [Google Scholar]
  • Kirkby E.A., Pilbeam D.J., 1984. Calcium as a plant nutrient. Plant, Cell Environ. 7, 397–405. [Google Scholar]
  • Li H., Chen Z., Zhou T., Liu Y., Zhou J., 2018. High potassium to magnesium ratio affected the growth and magnesium uptake of three tomato (Solanum lycopersicum L.) cultivars. J. Integr. Agric. 17, 2813–2821. [Google Scholar]
  • Martín P., Zarco-Tejada P.J., González M.R., 2008. Nutritional diagnosis and fertilizer recommendations in the limestone soils of Ribera de Duero. Vida Rural. 270, 26–32. [Google Scholar]
  • Messiga A. J., Gallant K. S., Sharifi M., Hammermeister A., Fuller K., Tango M., Fillmore S., 2015. Grape yield and quality response to cover crops and amendments in a Vineyard in Nova Scotia, Canada. Am. J. Enol. Vitic. 67, 7785. [Google Scholar]
  • Moss G.I., Higgins M.L., 1974. Magnesium influences on the fruit quality of sweet orange (Citrus sinensis L. Osbeck). Plant Soil. 41, 103-112. [Google Scholar]
  • Mpelasoka B.S., Schachtman D.P., Treeby M.T., Thomas M.R., 2003. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 9, 154–168. [Google Scholar]
  • Muthukrishnan C.E., Srinivasan C., 1974. Correlation between yield, quality, and petiole nutrients in grapes. Vitis. 12(4), 277–285. [Google Scholar]
  • Naugler C., McCallum J.L., Klassen G., Strommer J., 2007. Concentrations of trans-resveratrol and related stilbenes in Nova Scotia wines. Am. J. Enol. Vitic. 58, 117–119. [Google Scholar]
  • Neina D., 2019. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 5794869, 1–9. [Google Scholar]
  • Obbink J.G., Alexander D.M.E., Possingham J.B., 1973. Use of nitrogen and potassium reserves during growth of grape vine cuttings. Vitis. 12, 207–213. [Google Scholar]
  • OIV., 2003. Compendium of international methods of wine and must analysis. OIV, Paris. [Google Scholar]
  • OIV., 2009. Compendium of international methods of wine and must analysis. Organic acids. Method OIV-MA-AS313-04. OIV, Paris. [Google Scholar]
  • Peacock W.L., Christensen L.P., 2005. Drip irrigation can effectively apply boron to San Joaquin Valley vineyards. Calif. Agric. 59, 188–191. [Google Scholar]
  • Pedneault K., Provost C., 2016. Fungus resistant grape varieties as a suitable alternative for organic wine production. Benefits, limits, and challenges. Sci. Hortic. 208, 57–77. [Google Scholar]
  • Point E., Tyedmers P., Naugler C., 2012. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J. Clean. Prod. 27, 11–20. [Google Scholar]
  • Quaggio J.A., Sobrinho J.T., Dechen A.R., 1992. Magnesium influences on fruit yield and quality of ‘Valencia’ sweet orange on Rangpur lime. Proc. Int. Soc. Citric. 2, 633–637. [Google Scholar]
  • Raath P.J., 2012. Effect of varying levels of nitrogen, potassium and calcium nutrition on table grape vine physiology and berry quality. Doctoral Thesis. Department of Viticulture and Oenology, Faculty of AgriSciences. Stellenbosch University. [Google Scholar]
  • Rayar A.J., van Hai T., 1977. Effect of ammonium on uptake of phosphorus, potassium, calcium and magnesium by intact soybean plants. Plant Soil. 48, 81–87. [Google Scholar]
  • Rengel Z., 2015. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 15, 397–409. [Google Scholar]
  • Rogiers S.Y., Greer D.H., Hatfield J.M., Orchard B.A., Keller M., 2006. Mineral sinks within ripening grape berries (Vitis vinifera L.). Vitis. 45, 115–123. [Google Scholar]
  • Rogiers S.Y., Greer D.H., Moroni F.J., Baby T., 2020. Potassium and magnesium mediate the light and CO2 photosynthetic responses of grapevines. Biology. 9, 144. [Google Scholar]
  • Rogiers S.Y., Hatfield J.M., Keller M., 2004. Irrigation, nitrogen, and rootstock effects on volume loss of berries from potted Shiraz vines. Vitis. 43, 1–6. [Google Scholar]
  • Rutkowska B., Szulc W., Spychaj-Fabisiak E., Pior N., 2017. Prediction of molybdenum availability to plants in differentiated soil conditions. Plant Soil Environment. 63, 491–497. [Google Scholar]
  • Sangster A., 2018. Nova Scotia Soil. Fact Sheet. Perennia Food and Agriculture Inc. Available at: http.// [Google Scholar]
  • Shaw A. B., 2007. The emerging cool climate wine regions of eastern Canada. J. Wine Res. 10, 79–94. [Google Scholar]
  • Skoutelas D., Ricardo-da-Silva J., Laureano O., 2011. Validation and comparison of formol and FT-IR methods for assimilable nitrogen in vine grapes. S. Afr. J. Enol. Vitic. 32, 262–266. [Google Scholar]
  • Tonietto J., Carbonneau A., 2004. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 124, 81–97. [Google Scholar]
  • Tozzini L., Sabbatini P., Howell G.S., 2013. Increasing nitrogen availability at veraison through foliar applications. Implications for leaf assimilation and fruit ripening under source limitation in ‘Chardonnay’ (Vitis vinifera L.) grapevines. HortScience. 48, 608–613. [Google Scholar]
  • Vasconcelos M.C., Greven M., Winefield C.S., Trought M.C.T., Raw V., 2008. The flowering process of Vitis vinifera: A review. Am. J. Enol. Vitic. 60, 411–434. [Google Scholar]
  • Winkler A.J., 1974. General viticulture. 2º Edition. University of California Berkeley. [Google Scholar]
  • Withers P., 2015. Nova Scotia offers $1M incentive to double grape production. Canadian Broadcasting Corporation. Available at: https.// (accessed on 06.05.2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.