Open Access
Issue
Ciência Téc. Vitiv.
Volume 32, Number 1, 2017
Page(s) 42 - 52
DOI https://doi.org/10.1051/ctv/20173201042
Published online 09 August 2017
  • Allen R.G., Pereira L.S., Raes D., Smith M., 1998 Crop evapotranspiration: guidelines for computing crop water requirements, Irrigation and Drainage Paper 56. 300 p. United Nations FAO, Rome. [Google Scholar]
  • Battilani A., Mannini P., 2000. Grapevine (Vitis vinifera) yield and quality response to irrigation. Acta Hortic., 537, 895–902. [CrossRef] [Google Scholar]
  • Beis A., Patakas A., 2012. Relative contribution of photoprotection and antioxidative mechanisms to differential drought adaptation ability in grapevines. Environ. Exp. Bot., 78, 173–183. [CrossRef] [Google Scholar]
  • Bradford M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254. [CrossRef] [Google Scholar]
  • Cancela, J.J. Fandiño M., Rey B.J., Dafonte J., González X.P., 2017. Discrimination of irrigation water management effects in pergola trellis system vineyards using a vegetation and soil index. Agric. Water Manage., 183, 70–77. [CrossRef] [Google Scholar]
  • Cancela J.J., Fandiño M., Rey B.J., Martínez E.M., 2015. Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía). Agric. Water Manage., 151, 52–63. [CrossRef] [Google Scholar]
  • Cancela J.J., Trigo-Córdoba, E., Martínez E.M., Rey B.J., Bouzas- Cid Y., Fandiño M., Mirás-Avalos J.M., 2016. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric. Water Manage., 170, 99–109. [CrossRef] [Google Scholar]
  • Cavender-Bares J., Bazzaz F.A., 2004. From leaves to ecosystems: using chlorophyll fluorescence to assess photosynthesis and plant function in ecological studies. In: Chlorophyll a Fluorescence: a Signature of Photosynthesis. 737–755. Papageorgiou G.C., Govindjee G. (eds.), Springer, Amsterdam. [CrossRef] [Google Scholar]
  • Chaves M.M., Pereira J.S., Maroco J.P., Rodrigues M.L., Ricardo C.P.P., Osório M.L., Carvalho I., Faria T., Pinheiro C., 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot., 89, 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Cruz R., Lago A., Rial M.E., Díaz-Fierros F., Salsón S., 2009. Evolución recente do clima de Galicia. Tendencias observadas en variables meteorolóxicas. In: Evidencias e Impactos do Cambio Climático en Galicia. 19–58. Consellería de Medio Ambiente e Desenvolvemento Sostible, Xunta de Galicia, Santiago de Compostela. [Google Scholar]
  • de Souza C.R., Maroco J.P., dos Santos T.P., Rodríguez M.L., Lopes C.M., Pereira J.S., Chaves M.M., 2003. Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel). Funct. Plant Biol., 30, 653–662. [CrossRef] [PubMed] [Google Scholar]
  • Dinis L-T., Correia C.M., Ferreira H.F., Gonçalves B., Gonçalves I., Coutinho J.F., Ferreira M.I., Malheiro A.C., Moutinho-Pereira J., 2014. Physiological and biochemical responses of Semillon and Muscat Blanc à Petit Grains winegrapes grown under Mediterranean climate. Sci. Hortic., 175, 128–138. [CrossRef] [Google Scholar]
  • dos Santos T.P., Lopes C.M., Rodrigues M.L., Souza C.R., Maroco J.P., Pereira J.S., Silva J.R., Chaves M.M., 2003. Partial root zone drying: effects on growth and fruit quality of field-grown grapevines Vitis vinifera L. Funct. Plant Biol., 30, 663–671. [CrossRef] [PubMed] [Google Scholar]
  • Escalona J.M., Flexas J., Medrano H., 1999. Stomatal and nonstomatal limitations of photosynthesis under water stress in fieldgrown grapevines. Aus. J. Plant Physiol., 26, 421–433. [CrossRef] [Google Scholar]
  • Fandiño M., Cancela J.J., Rey B.J., Martínez E.M., Rosa R.G., Pereira L.S., 2012. Using the dual-Kc approach to model evapotranspiration of Albariño vineyards (Vitis vinifera L. cv. Albariño) with consideration of active ground cover. Agric. Water Manag., 112, 75–87. [CrossRef] [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Cardoso R.M., Soares P.M.M., Cancela J.J., Pinto J.G., Santos J.A., 2014. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions. PLOS One, 9, e108078. [CrossRef] [PubMed] [Google Scholar]
  • Heath R.L., Packer L., 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198. [CrossRef] [PubMed] [Google Scholar]
  • Intrigliolo D.S., Castel J.R., 2010. Response of grapevine cultivar ‘Tempranillo’ to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrig. Sci., 28, 113–125. [CrossRef] [Google Scholar]
  • Irigoyen J.J., Emerich D.W., Sánchez-Díaz M., 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plantarum, 84, 55–60. [CrossRef] [Google Scholar]
  • Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method. Enzymol., 148, 350–382. [CrossRef] [Google Scholar]
  • Maringo G., Peltier J.P., 1996. Analysis of the diurnal change in osmotic potential in leaves of Fraxinus excelsior L. J. Exp. Bot., 47, 763–769. [CrossRef] [Google Scholar]
  • Maroco J.P., Rodrigues M.L., Lopes C., Chaves M.M., 2002. Limitations to leaf photosynthesis in field-grown grapevine under drought – metabolic and modelling approaches. Funct. Plant Biol., 29, 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Martínez, E.M., Rey, B.J., Fandiño, M., Cancela, J.J., 2013. Comparison of two techniques for measuring leaf water potential in Vitis vinifera var. Albariño. Ciência Tec. Vitiv. 28, 29–41. [Google Scholar]
  • Martínez, E.M., Rey, B.J., Fandiño, M., Cancela, J.J., 2016. Impact of water stress and nutrition on Vitis vinifera cv. ‘Albariño’: Soilplant water relationships, cumulative effects and productivity. Span. J. Agric. Res. 14(1), e1202, 15 pages [CrossRef] [Google Scholar]
  • Maxwell K., Johnson G.N., 2000. Chlorophyll fluorescence – a practical guide. J. Exp. Bot., 51, 659–668. [Google Scholar]
  • Medrano H., Escalona J.M., Cifre J., Bota J., Flexas J., 2003. A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Funct. Plant Biol., 30, 607–619. [CrossRef] [PubMed] [Google Scholar]
  • Mills H.A., Benton Jones J.Jr., 1996. Plant Analysis Handbook II. MicroMacro Publishing Inc., Athens, GA, USA. [Google Scholar]
  • Mirás-Avalos J.M., Trigo-Córdoba E., Bouzas-Cid Y., 2014. Does predawn water potential discern between irrigation treatments in Galician white grapevine cultivars? J. Int. Sci. Vigne Vin, 48, 123–127. [Google Scholar]
  • Moutinho-Pereira J., Correia C.M., Gonçalves B., Bacelar E.A., Coutinho J.F., Ferreira H.F., Lousada J.L., Cortez M.I., 2012. Impacts of leafroll-associated viruses (GLRa-1 and –3) on the physiology of the Portuguese grapevine cultivar ‘Touriga Nacional’ growing under field conditions. Ann. Appl. Biol., 160, 237–249. [CrossRef] [Google Scholar]
  • Osaki M., Shinano T., Tadano T., 1991. Redistribution of carbon and nitrogen compound from the shoot to the harvesting organs during maturation in field crops. Soil Sci. Plant Nutr., 37, 117–128. [CrossRef] [Google Scholar]
  • R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [Google Scholar]
  • Reynolds A.G., Lowrey W.D., Tomek L., Hakimi J., de Savigny, C., 2007. Influence of irrigation on vine performance, fruit composition, and wine quality of Chardonnay in a cool, humid climate. Am. J. Enol. Vitic., 58, 217–228. [Google Scholar]
  • Romero P., Fernéndez-Fernández J.I., Martínez-Cutillas A., 2010. Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. Am. J. Enol. Vitic., 61, 300–312. [CrossRef] [Google Scholar]
  • Sesták Z., Castky J., Jarvis P.G., 1971. Plant photosynthetic production. In: Manual of Methods. 818. Dr. W. Junk Publ., Haia. [Google Scholar]
  • Singleton V.L., Rossi J.A.J., 1965. Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158. [Google Scholar]
  • Steele M.R., Gitelson A.A., Rundquist D.C., 2008. A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron. J., 100, 779–782. [CrossRef] [Google Scholar]
  • Suzy Y.R., Dennis H.G., Hutton R.J., Clarke S.J., 2011. Transpiration efficiency of the grapevine cv. Semillon is tied to VPD in warm climates. Ann. Appl. Biol., 158, 106–114. [CrossRef] [Google Scholar]
  • Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I., Mirás- Avalos J.M., 2015. Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain. Agric. Water Manage., 161, 20–30. [CrossRef] [Google Scholar]
  • Williams L.E., Trout T.J., 2005. Relationships among vine- and soil-based measures of water status in a Thompson seedless vineyard in response to high-frequency drip irrigation. Am. J. Enol. Vitic., 56, 357–366. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.