Open Access
Ciência Téc. Vitiv.
Volume 32, Number 1, 2017
Page(s) 33 - 41
Published online 09 August 2017
  • Asner G., Carlsonm K., Martin R., 2005. Substrate age and precipitation effects on Hawaiian forest canopies from spaceborne imaging spectroscopy. Remote Sens. Environ., 9, 457–467. [CrossRef]
  • Asner G.P., Martin R.E., Carlson K.M., Rascher U., Vitousek P.M., 2006. Vegetation-climate interactions among native and invasive species in Hawaiian rainforest. Ecosystems, 9, 1106–1117. [CrossRef]
  • Blackburn A.G., 1998. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int. J. Remote Sens., 19, 657–675. [CrossRef]
  • Deloire A., 2013. New method to determine optimal ripeness for white wine styles. Practical Winery Journal, Winter 2013, 75–79.
  • Dougherty P.H., 2012. Introduction to the geographical study of viticulture and wine production BT - In: The geography of wine: regions, terroir and techniques. 3–36. Dougherty H. P. (ed.). Springer, Netherlands. [CrossRef]
  • Gitelson A., 2012. Nondestructive estimation of foliar pigment (chlorophylls, carotenoids, and anthocyanins) contents. In: Hyperspectral remote sensing of vegetation. 141–166. Thenkabail P., Lyon J., Huete A. (eds). CRC Press, Boca Raton.
  • Gitelson A.A., Zur Y., Chivkunova O.B., Merzlyak M.N., 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol., 75, 272–281. [CrossRef] [PubMed]
  • Hall A., Lamb D.W., Holzapfel B., Louis J., 2002. Optical remote sensing applications in viticulture - a review. Aust. J. Grape Wine Res., 8, 36–47. [CrossRef]
  • Johnson L.F., Herwitza, S., Dunagana, S., Lobitza, B., Sullivana D., Slyea R., 2003. Collection of ultra high spatial and spectral resolution image data over California vineyards with a small UAV. In: Proceedings of the International Symposium on Remote Sensing of Environment, Honolulu, HI, USA, 10–14 November 2003; p. 3.
  • Keskitalo J., Bergquist G., Gardeström P., Jansson S., 2005. A cellular timetable of Autumn senescence. Plant Physiol., 139, 1635–1648. [CrossRef] [PubMed]
  • Lamb D.W., Weedon M.M., Bramley R.G.V., 2004. Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimizing image resolution. Aust. J. Grape Wine Res., 10, 46–54. [CrossRef]
  • Matese A., Gennaro S.F. 2015. Technology in precision viticulture: a state of the art review. Intern. J. Wine Res., 7, 69–81. [CrossRef]
  • Meggio F., Zarco-Tejada P.J., Núñez L.C., Sepulcre-Cantó G., González M.R., Martín, P. 2010. Grape quality assessment in vineyards affected by iron deficiency chlorosis using narrow-band physiological remote sensing indices. Remote Sens. Environ., 114, 1968–1986. [CrossRef]
  • Merzlyak M.N., Gitelson A., 1995. Why and what for the leaves are yellow in Autumn? On the interpretation of optical spectra of senescing leaves (Acerplatanoides L.). J. Plant Physiol., 145, 315–320. [CrossRef]
  • Munné-Bosch S., Alegre L., 2000. The xanthophyll cycle is induced by light irrespective of water status in field-grown lavender (Lavandula stoechas) plants. Physiol. Plantarum, 108, 147–151. [CrossRef]
  • Munné-Bosch S., Penuelas J., 2003. Photo-and antioxidative protection during summer leaf senescence in Pistacia lentiscus L. grown under mediterranean field conditions. Ann. Bot., 92, 385–391. [CrossRef] [PubMed]
  • Peñuelas J., Gamon J.A., Fredeen A.L., Merino J., Field C.B., 1994. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ., 48, 135–46. [CrossRef]
  • Peñuelas J., Baret F., Filella I., 1995. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230.
  • Rakotomalala R., 2005. TANAGRA: un logiciel gratuit pour l'enseignement et la recherche. In: Actes de EGC'2005, RNTI-E-3, vol. 2, pp.697–702.
  • Rouse J.W., Deering D.W.Jr, Schell J.A., Harlan J.C., 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC type III final report: Greenbelt, Maryland, NASA, 371 p.
  • Sebela D., Olejnickova J., Zupcanova A., Sotolar R., 2012. Response of grapevine leaves to Plasmopara viticola infection by means of measurement of reflectance and fluorescence signals. Acta Univ. Agric. Silvic. Mendelianae Brun., 60, 229–238. [CrossRef]
  • Sims D.A., Gamon J.A., 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ., 81, 337–54. [CrossRef]
  • Zartaloudis Z.D., Iatrou M., Savvidis G., Savvidis K., Glavenas D., Kalogeropoulos K., Kyparissi S., 2015. Early and timely detection of Verticillium dahliae in olive growing using remote sensing. El Aceite de Oliva, Actas Simposio Expoliva 2015, Jaen, Espana, 6-8 Mayo.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.