Open Access
Issue
Ciência Téc. Vitiv.
Volume 30, Number 2, 2015
Page(s) 84 - 93
Section Technical Note / Nota Técnica
DOI https://doi.org/10.1051/ctv/20153002084
Published online 26 January 2016
  • Barmuud N., Zerihun A., Gibberd M., Bates B., 2014. Berry composition and climate: responses and empirical models. Int. J. Biometeorol., 58, 1207–1223. [CrossRef] [PubMed] [Google Scholar]
  • Bell S.J., Henschke P.A., 2005. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res., 11, 242–295. [CrossRef] [Google Scholar]
  • Blanco P., Mirás-Avalos J.M., Suárez V., Orriols I., 2012. Inoculation of Treixadura musts with autochthonous Saccharomyces cerevisiae strains: Fermentative performance and influence on the wine characteristics. Food Sci. Technol. Int., 19, 177–186. [CrossRef] [Google Scholar]
  • Falqué E., Fernández E., Dubourdieu D., 2001. Differentiation of white wines by their aromatic index. Talanta, 54, 271–281. [CrossRef] [PubMed] [Google Scholar]
  • Garde-Cerdán T., Lorenzo C., Lara J.F., Pardo F., Ancín-Azpilicueta C., Salinas M.R., 2009. Study of the evolution of nitrogen compounds during grape ripening. Application to differentiate grape varieties and cultivated systems. J. Agric. Food Chem., 57, 2410–2419. [Google Scholar]
  • Garde-Cerdán T., López R., Portu J., González-Arenzana L., López-Alfaro I., Santamaría P., 2014. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers. Food Chem., 163, 136–141. [Google Scholar]
  • Gómez-Alonso S., Hermosín-Gutiérrez I., García-Romero E., 2007. Simultaneous HPLC analysis of biogenic amines, amino acids and ammonium ion as aminoenone derivatives in wine and beer samples. J. Agric. Food Chem., 55, 608–613. [CrossRef] [PubMed] [Google Scholar]
  • Guitart A., Orte P.H., Ferreira V., Pena C., Cacho J., 1999. Some observations about the correlation between the amino-acid content of musts and wines of the Chardonnay variety and their fermentation aromas. Am. J. Enol. Vitic., 50, 253–258. [Google Scholar]
  • Herbert P., Cabrita M.J., Ratola N., Laureano O., Alves A., 2005. Free amino acids and biogenic amines in wines and musts from the Alentejo region. Evolution of amines during alcoholic fermentation and relationship with variety, sub-region and vintage. J. Food Eng., 66, 315–322. [Google Scholar]
  • Hernández-Orte P., Cacho J.F., Ferreira V., 2002. Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. J. Agric. Food Chem., 50, 2891–2899. [Google Scholar]
  • Hernández-Orte P., Guitart A., Cacho J., 1999. Changes in the concentration of amino acids during the ripening of Vitis vinifera Tempranillo variety from the Denomination of Origin Somontano (Spain). Am. J. Enol. Vitic., 50, 144–154. [Google Scholar]
  • Kliewer W.M., 1968. Changes in the concentration of free amino acids in grape berries during maturation. Am. J. Enol. Vitic., 19, 166–174. [Google Scholar]
  • Kliewer W.M., 1970. Free amino acids and other nitrogenous fractions in wine grapes. J. Food Sci., 34, 274–278. [CrossRef] [Google Scholar]
  • Lee J., Schreiner R.P., 2010. Free amino acid profiles from “Pinot Noir” grapes are influenced by vine N-status and sample preparation method. Food Chem., 119, 484–489. [CrossRef] [Google Scholar]
  • Makra L., Vitanyi B., Gal A., Mika J., Matyasovszky I., Hirsch T., 2009. Wine quantity and quality variations in relation to climatic factors in the Tokaj (Hungary) winegrowing region. Am. J. Enol. Vitic., 60, 312–321. [Google Scholar]
  • Martínez-Pinilla O., Guadalupe Z., Hernández Z., Ayestarán B., 2013. Amino acids and biogenic amines in red varietal wines: the role of grape variety, malolactic fermentation and vintage. Eur. Food Res. Technol., 237, 887–895. [CrossRef] [Google Scholar]
  • Moreno-Arribas M.V., Polo M.C., 2009. Amino acids and biogenic amines. in: Wine Chemistry and Biochemistry. 163–190. Moreno-Arribas M.V., Polo M.C. (eds.), Springer, New York. [CrossRef] [Google Scholar]
  • OIV, 2009. Compendium of International Methods of Wine and Must Analysis. Vols. 1 and 2. OIV, Paris. [Google Scholar]
  • Ortega-Heras M., Pérez-Magariño S., del Villar-Garrachón V., González-Huerta C., Moro González L.C., Guadarrama Rodríguez A., Villanueva Sánchez S., Gallo González R., Martín de la Helguera S., 2014. Study of the effect of vintage, maturity degree, and irrigation on the amino acid and biogenic amine content of a white wine from the Verdejo variety. J. Sci. Food Agric., 94, 2073–2082. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team, 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. [Google Scholar]
  • Soar C., Sadras V., Petrie P., 2008. Climate drivers of red wine quality infour contrasting Australian wine regions. Aust. J. Grape Wine Res., 14, 78–90. [CrossRef] [Google Scholar]
  • Soufleros E.H., Bouloumpasi E., Tsarchopoulos C., Biliaderis C.G., 2003. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chem., 80, 261–273. [CrossRef] [Google Scholar]
  • Stines A.P., Grubb J., Gockowiak H., Henschke P.A., Høj P.B., van Heeswijck R., 2000. Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: Influence of vine cultivar, berry maturity and tissue type. Aust. J. Grape Wine Res., 6, 150–158. [CrossRef] [Google Scholar]
  • Storchmann K., 2005. English weather and Rhine wine quality: an ordered probit model. J. Wine Res., 16, 105–120. [CrossRef] [Google Scholar]
  • Styger G., Prior B., Bauer F.F., 2011. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol., 38, 1145–1159. [CrossRef] [PubMed] [Google Scholar]
  • Swiegers J.H., Bartowsky E.J., Henschke P.A., Pretorius I.S., 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res., 11, 109–113. [CrossRef] [Google Scholar]
  • Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I., Mirás-Avalos J.M., 2014. Irrigation effects on the sensory perception of wines from three white grapevine cultivars traditional from Galicia (Albariño, Godello and Treixadura). Ciência Téc. Vitiv., 29, 71–80. [CrossRef] [EDP Sciences] [Google Scholar]
  • Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I., Mirás-Avalos J.M., 2015. Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain. Agric. Water Manage., 161, 20–30. [CrossRef] [Google Scholar]
  • van Heeswijck R., Stines A.P., Grubb J., Skrumsager Muller I., Hoj P.B., 2001. Molecular biology and biochemistry of proline accumulation in developing grape berries. In: Molecular Biology and Biotechnology of the Grapevine. 87–108. Roubelakis-Angelakis K.A. (ed.), Kluwer, Dordrecht. [CrossRef] [Google Scholar]
  • Versini G., Orriols I., Dalla Serra A., 1994. Aroma components of Galician Albariño, Loureira and Godello wines. Vitis, 33, 165–170. [Google Scholar]
  • Winkler A., 1974. General viticulture. University of California Press, Los Angeles. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.