Open Access
Issue
Ciência Téc. Vitiv.
Volume 30, Number 2, 2015
Page(s) 69 - 83
DOI https://doi.org/10.1051/ctv/20153002069
Published online 26 January 2016
  • Alcalde-Eon C., Escribano-Bailon M.T., Santos-Buelga C., Rivas-Gonzalo J.C., 2006. Changes in the detailed pigment composition of red wine during maturity and ageing - A comprehensive study. Anal. Chim. Acta, 563, 238–254. [CrossRef] [Google Scholar]
  • Asenstorfer R.E., Lee D.F., Jones G.P., 2006 Influence of structure on the ionisation constants of anthocyanin and anthocyanin-like wine pigments. Anal. Chim. Acta, 563, 10–14. [CrossRef] [Google Scholar]
  • Birse M.J., 2007. The Colour of Red Wine. 306 p. PhD Thesis, University of Adelaide. [Google Scholar]
  • Bosch-Fusté J., Sartini E., Flores-Rubio C., Caixach J., López-Tamames E., Buxaderas S., 2009. Viability of total phenol index value as quality marker of sparkling wines, “cavas”. Food Chem., 114, 782–790. [CrossRef] [Google Scholar]
  • Boulton R., 2001. The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review. Am. J. Enol. Vitic., 2, 67–87. [Google Scholar]
  • Brouillard R., 1988. Flavonoids and flower colour. In: J. B. Harborne (ed.), The Flavonoids 16, 525–538, Springer US. [CrossRef] [Google Scholar]
  • Cabrita M.J., Aires-de-Sousa J., Gomes da Silva M.D.R., Rei F., Costa Freitas A.M., 2012. Multivariate statistical approaches for wine classification based on low molecular weight phenolic compounds. Aust. J. Grape Wine Res., 18, 138–146. [CrossRef] [Google Scholar]
  • Cabrita M.J., Ricardo-da-Silva J.M., Laureano O., 2003. Polyphenolic Compounds of Grapes and Wines. In: 1st International Seminar of Viticulture and Wine Making, 61–102, Ensenada, Mexico. [Google Scholar]
  • Cadot Y., Caille S., Samson A., Barbeau G., Cheynier V., 2010. Sensory dimension of wine typicality related to a terroir by Quantitative Descriptive Analysis, Just About Right analysis and typicality assessment. Anal. Chim. Acta, 660, 53–62. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho E., Mateus N., Plet B., Pianet I., Dufourc E., De Freitas V., 2006. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. J. Agric. Food Chem., 54, 8936–8944. [CrossRef] [PubMed] [Google Scholar]
  • Castillo-Sánchez J.X., García-Falcón M.S., Garrido J., Martínez-Carballo E., Martins-Dias L. R., Mejuto X.C., 2008. Phenolic compounds and colour stability of Vinhão wines: Influence of wine-making protocol and fining agents. Food Chem., 106, 18–26. [CrossRef] [Google Scholar]
  • Charlton A.J., Baxter N.J., Khan M.L., Moir A.J.G., Haslam E., Davies A.P., Williamson M.P., 2002. Polyphenol/peptide binding and precipitation. J. Agric. Food Chem., 50, 1593–1601. [CrossRef] [PubMed] [Google Scholar]
  • Cheynier V., Comte G., Davies K.M., Lattanzio V., Martens S., 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol. Biochem., 72, 1–20. [CrossRef] [PubMed] [Google Scholar]
  • Cosme F., Ricardo-Da-Silva J.M., Laureano O., 2009. Tannin profiles of Vitis vinifera L. cv. red grapes growing in Lisbon and from their monovarietal wines. Food Chem., 112, 197–204. [CrossRef] [Google Scholar]
  • Costa E., Cosme F., Jordão A.M., Mendes-Faia A., 2014. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. J. Int. La Sci. La Vigne Du Vin, 48, 51–62. [Google Scholar]
  • Costa M.G., Cabrita M.J., Rosario C., Laureano O., 1998. Contribution for physicochemical characterization of 3 Alentejo cultivars. In: 4th Viticultural Symposium of Alentejo, 97–104, Évora. [Google Scholar]
  • Cristea E., 2014. Determination of the optimal Phenolic Extration in red wines using the Glories method. 61 p. Master Thesis, Universidade Católica Portuguesa. [Google Scholar]
  • Cristino R., Costa E., Cosme F., Jordão A.M., 2013. General phenolic characterisation, individual anthocyanin and antioxidant capacity of matured red wines from two Portuguese Appellations of Origins. J. Sci. Food Agric., 93, 2486–2493. [CrossRef] [PubMed] [Google Scholar]
  • Dallas C., Laureano O., 1994. Effect of SO2 on the extraction of individual anthocyanins and colored matter of three Portuguese grape varieties during winemaking. Vitis, 33, 41–47. [Google Scholar]
  • Dopico-García M.S., Fique A., Guerra L., Afonso J.M., Pereira O., Valentão P., Seabra R.M., 2008. Principal components of phenolics to characterize red Vinho Verde grapes: anthocyanins or non-coloured compounds? Talanta, 75, 1190–202. [CrossRef] [PubMed] [Google Scholar]
  • Esparza I., Santamaría C., Calvo I., Fernández J.M., 2009. Significance of CIELAB parameters in the routine analysis of red wines. CyTA - J. Food, 7, 189–199. [CrossRef] [Google Scholar]
  • Fernandes P., Ricardo-da-Silva J.R., Castro R., 2010. Comportamento Agronómico e Enológico das Castas Syrah e Touriga Nacional em seis “Terroirs” de Portugal. In: 8º Simpósio de Vitivinicultura do Alentejo, 143–153.Évora. [Google Scholar]
  • Fernández-Pachón M.S., Villaño D., García-Parrilla M.C., Troncoso A.M., 2004. Antioxidant activity of wines and relation with their polyphenolic composition. Anal. Chim. Acta, 513, 113–118. [CrossRef] [Google Scholar]
  • Fischer U., Christmann M., Heeß U., Hoffmann U. Eisenbarth J., Tesch H., 1999. Development of an Aroma Wheel for German White and Red Wines. In 24th OIV World Vine and Wine Congress 2, 201–207. Mainz. [Google Scholar]
  • Fontoin H., Saucier C., Teissedre P.-L., Glories Y., 2008. Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual. Prefer., 19, 286–291. [CrossRef] [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Jones G.V., Alves F., Pinto J.G., Santos J.A., 2013. Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios, Reg. Environ. Chang., 14, 295–306. [CrossRef] [Google Scholar]
  • Fraga H., Santos J.A., Malheiro A.C., Moutinho-Pereira J., 2012. Climate Change Projections for the Portuguese Viticulture using a Multi-Model Ensemble. Ciência Tec. Vitiv., 27, 39–48. [Google Scholar]
  • García-Puente E.R., Alcalde-Eon C., Santos-Buelga C., Rivas-Gonzalo J.C., Escribano-Bailón M.T., 2006. Behaviour and characterisation of the colour during red wine making and maturation. Anal. Chim. Acta, 563, 215–222. [CrossRef] [Google Scholar]
  • Gawel R., 1998. Red wine astringency: a review, Aust. J. Grape Wine Res., 4, 74–95. [CrossRef] [Google Scholar]
  • Gawel R., Iland P.G., Francis I.L., 2001. Characterizing the astringency of red wine: a case study. Food Qual. Prefer., 12, 83–94. [CrossRef] [Google Scholar]
  • Gawel R., Oberholster A., Francis I.L., 2000. A “Mouth-feel Wheel”: terminology for communicating the mouth-feel characteristics of red wine. Aust. J. Grape Wine Res., 6, 203–207. [CrossRef] [Google Scholar]
  • Gonçalves F.J., Jordão A.M., 2009. Influence of different commercial fining agents on proanthocyanidin fraction and antioxidant activity of a red wine from baga grapes. J. Int. Des Sci. La Vigne Du Vin, 43, 111–120. [Google Scholar]
  • Gonçalves F.J., Rocha S.M., Coimbra M.A., 2012. Study of the retention capacity of anthocyanins by wine polymeric material. Food Chem., 134, 957–963. [CrossRef] [PubMed] [Google Scholar]
  • González-Manzano S., Mateus N., De Freitas V., Santos-Buelga C., 2008. Influence of the degree of polymerisation in the ability of catechins to act as anthocyanin copigments. , Eur. Food Res Technol., 227, 83–92. [CrossRef] [Google Scholar]
  • Gonzalo-Diago A., Dizy M., Fernández-Zurbano P., 2014. Contribution of low molecular weight phenols to bitter taste and mouthfeel properties in red wines. Food Chem., 154, 187–198. [CrossRef] [PubMed] [Google Scholar]
  • Harrar V., Spence C., 2013. The taste of cutlery: how the taste of food is affected by the weight, size, shape, and colour of the cutlery used to eat it. Flavour, 2:21. [CrossRef] [Google Scholar]
  • Hernández B., Sáenz C., de la Hoz J.F., Alberdi C., Alfonso S., Diñeiro J.M., 2009. Assessing the color of red wine like a taster’s eye. Color Res. Appl. 34:153–162. [CrossRef] [Google Scholar]
  • Jordão A.M., Correia A.C., 2012. Relationship between antioxidant capacity, proanthocyanidin and anthocyanin content during grape maturation of Touriga Nacional and Tinta Roriz grape varieties. South African J. Enol. Vitic., 33, 214–224. [Google Scholar]
  • Jordão A.M., Gonçalves F.J., Correia A.C., Cantão A.J., Rivero-Pérez M.D., SanJosé M.L.G., 2010. Proanthocyanidin content, antioxidant capacity and scavenger activity of portuguese sparkling wines (Bairrada Appellation of Origin). J. Sci. Food Agric., 90, 2144–2152. [PubMed] [Google Scholar]
  • Jordão A.M., Simoes S., Correia A.C., Goncalves F.J., 2012. Antioxidant activity evolution during portuguese red wine vinification and their relation with the proanthocyanidin and anthocyanin composition. J. Food Process Preserv., 36, 298–309. [CrossRef] [Google Scholar]
  • Jose-Coutinho A., Avila P., Ricardo-Da-Silva J.M., 2013. Contribuição para a caracterização sensorial dos vinhos tranquilos tintos com Indicação Geográfica Protegida de Portugal Continental. Enologia, 61, 25–34. [Google Scholar]
  • Jose-Coutinho A., Avila P., Ricardo-Da-Silva J.M., 2015. Sensory Profile of Portuguese White Wines Using Long-Term Memory: A Novel Nationwide Approach. J. Sens. Stud., 30, 381–394. [CrossRef] [Google Scholar]
  • Kennedy J.A., 2008. Grape and wine phenolics: Observations and recent findings. Cienc. Y Investig. Agrar., 35, 107–120. [Google Scholar]
  • Lesschaeve I., Noble A.C., 2005. Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr., 81, 330S–335S. [PubMed] [Google Scholar]
  • Magalhães N., Oliveira A., Caeiro L., 1995. Contributo para a caracterização climática das Regiões Vitícolas de Portugal Continental. In: 3º Simpósio de Vitivinicultura do Alentejo 1, 81–90. Évora. [Google Scholar]
  • Maitre I., Symoneaux R., Jourjon F., Mehinagic E., 2010. Sensory typicality of wines: How scientists have recently dealt with this subject. Food Qual. Prefer.. 21, 726–731. [CrossRef] [Google Scholar]
  • Marquez A., Serratosa M.P., Merida J., 2013. Pyranoanthocyanin derived pigments in wine: Structure and formation during winemaking. J. Chem., 2013, 1–15. [Google Scholar]
  • Mateus N., Machado J.M., de Freitas V., 2002. Development changes of anthocyanins in Vitis vinifera grapes grown in the Douro Valley and concentration in respective wines. J. Sci. Food Agric., 82, 1689–1695. [CrossRef] [Google Scholar]
  • McRae J.M., Kennedy J.A., 2011. Wine and grape tannin interactions with salivary proteins and their impact on astringency: A review of current research. Molecules, 16, 2348–2364. [CrossRef] [PubMed] [Google Scholar]
  • Monagas M., Bartolomé B., Gómez-Cordovés C., 2005. Updated knowledge about the presence of phenolic compounds in wine. , Crit. Rev. Food Sci, Nutr., 45, 85–118. [CrossRef] [Google Scholar]
  • Noble A.C., Arnold R.A., Buechsenstein J., Leach E.J., Schmidt J.O., Stern P.M,. 1987.Modification of a standardized system of wine aroma terminology. Am. J. Enol. Vitic., 38, 143–146. [Google Scholar]
  • Obreque-Slier E., Peña-Neira Á., López-Solís R., 2012. Interactions of enological tannins with the protein fraction of saliva and astringency perception are affected by pH.. LWT - Food Sci., Technol., 45, 88–93. [CrossRef] [Google Scholar]
  • Parr W.V, Heatherbell D., White K.G., 2002. Demystifying wine expertise: olfactory threshold, perceptual skill and semantic memory in expert and novice wine judges. Chem. Senses, 27, 747–55. [CrossRef] [PubMed] [Google Scholar]
  • Peynaud E., Blouin J., 1996. The Taste of Wine: The Art Science of Wine Appreciation. 346 p. John Wiley & Sons, Ltd. [Google Scholar]
  • Quijada-Morín N., Williams P., Rivas-Gonzalo J.C., Doco T., Escribano-Bailón M.T., 2014. Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chem., 154, 44–51. [CrossRef] [PubMed] [Google Scholar]
  • Rodrigues A., Ricardo-Da-Silva J.M., Lucas C., Laureano O., 2013. Effect of winery yeast lees on touriga nacional red wine color and tannin evolution. Am. J. Enol. Vitic., 64, 98–109. [CrossRef] [Google Scholar]
  • Scollary G.R., Pásti G., Kállay M., Blackman J., Clark A.C., 2012. Astringency response of red wines: Potential role of molecular assembly. Trends Food Sci. Technol., 27, 25–36. [CrossRef] [Google Scholar]
  • Smith A.K., Noble A.C., 1998. Effects of increased viscosity on the sourness and astringency of aluminum sulfate and citric acid. Food Qual. Prefer., 9, 139–144. [CrossRef] [Google Scholar]
  • Spielmann N., 2012. Terroir? That’s not how I would describe it. Int. J. Wine Bus. Res., 24, 254–270. [CrossRef] [Google Scholar]
  • Suarez R., Monagas M., Bartolome B., Gomez-Cordoves C., 2007. Phenolic composition and colour of Vitis vinifera L. cv merlot wines from different vintages and aging time in bottle. Ciência Téc. Vitiv., 22, 35–44. [Google Scholar]
  • Sun B., Neves A.C., Fernandes T.A., Fernandes A.L., Mateus N., De Freitas V., Spranger M.I., 2011. Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. J. Agric. Food Chem., 59, 6550–6557. [CrossRef] [PubMed] [Google Scholar]
  • Sun B., Ricardo-Da-Silva J.M., Spranger M.I., 2001. Quantification of catechins and proanthocyanidins in several Portuguese grapevine varieties and red wines. Ciência Téc. Vitiv., 16, 23–34. [Google Scholar]
  • Sun B., Sa M., Leandro C., Caldeira I., Duarte F., Spranger M.I., 2013. Reactivity of Polymeric Proanthocyanidins toward Salivary Proteins. J. Agric. Food Chem., 61, 939–946. [CrossRef] [PubMed] [Google Scholar]
  • Tonietto J., Ruiz V.S., Zanus M.C, Montes C., 2014. The effect of viticultural climate on red and white wine typicity. Characterization in Ibero-American grape-growing regions. J. Int. La Sci. La Vigne Du Vin, (Special Laccave), 19–23. [Google Scholar]
  • Tuorila H., Monteleone E., 2009. Sensory food science in the changing society: Opportunities, needs, and challenges. Trends Food Sci. Technol., 20, 54–62. [CrossRef] [Google Scholar]
  • Valentova H., Skrovankova S., Panovska Z., Pokorny J., 2002. Time-intensity studies of astringent taste. Food Chem., 78, 29–37. [CrossRef] [Google Scholar]
  • Vaudour E., Shaw A.B., 2005. A worldwide perspective on viticultural zoning. South African J. Enol. Vitic., 26, 106–115. [Google Scholar]
  • Vidal S., Francis L., Noble A., Kwiatkowski M., Cheynier V., Waters E., 2004a. Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta, 513, 57–65. [CrossRef] [Google Scholar]
  • Vidal S., Francis L., Williams P., Kwiatkowski M., Gawel R., Cheynier V., Waters E., 2004b. The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium. Food Chem., 85, 519–525. [CrossRef] [Google Scholar]
  • Vilanova M., Genisheva Z., Masa A., Oliveira J.M., 2010. Correlation between volatile composition and sensory properties in Spanish Albarino wines. Microchem. J., 95, 240–246. [CrossRef] [Google Scholar]
  • Vivar-Quintana A.M., Santos-Buelga C., Rivas-Gonzalo J.C., 2002. Anthocyanin-derived pigments and colour of red wines. Anal. Chim. Acta, 458, 147–155. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.