Open Access
Review
Issue
Ciência Téc. Vitiv.
Volume 37, Number 2, 2022
Page(s) 139 - 158
DOI https://doi.org/10.1051/ctv/ctv20223702139
Published online 27 October 2022
  • Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage 56. FAO, Rome. [Google Scholar]
  • Arias L.A., Berli F., Fontana A., Bottini R., Piccoli P., 2022. Climate change effects on grapevine physiology and biochemistry: Benefits and challenges of high altitude as an adaptation strategy. Front. Plant Sci., 13. [CrossRef] [Google Scholar]
  • Asseng S., Ewert F., Martre P., Rötter R.P., Lobell D.B., Cammarano D., Kimball B.A., Ottman M.J., Wall G.W., White J.W., Reynolds M.P., Alderman P.D., Prasad P.V.V, Aggarwal P.K., Anothai J., Basso B., Biernath. C., Challinor A.J., De Sanctis G., Doltra J., Fereres E., Garcia-Vila M., Gayler S., Hoogenboom G., Hunt L.A., Izaurralde R.C., Jabloun M., Jones C.D., Kersebaum K.C., Koehler A.-K., Müller C., Naresh Kumar S., Nendel C., O’Leary G., Olesen J.E., Palosuo T., Priesack E., Eyshi Rezaei E., Ruane A.C., Semenov M.A., Shcherbak I., Stöckle C., Stratonovitch P., Streck T., Supit I., Tao F., Thorburn P.J., Waha K., Wang E., Wallach D., Wolf J., Zhao Z., Zhu Y., 2015. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143–147. [CrossRef] [Google Scholar]
  • Asseng S., Ewert F., Rosenzweig C., Jones J.W., Hatfield J.L., Ruane A.C., Boote K.J., Thorburn P.J., Rötter R.P., Cammarano D., Brisson N., Basso B., Martre P., Aggarwal P.K., Angulo C., Bertuzzi P., Biernath C., Challinor A.J., Doltra J., Gayler S., Goldberg R., Grant R., Heng L., Hooker J., Hunt L.A., Ingwersen J., Izaurralde R.C., Kersebaum K.C., Müller C., Naresh Kumar S., Nendel C., O’Leary G., Olesen J.E., Osborne T.M., Palosuo T., Priesack E., Ripoche D., Semenov M.A., Shcherbak I., Steduto P., Stöckle C., Stratonovitch P., Streck T., Supit I., Tao F., Travasso M., Waha K., Wallach D., White J.W., Williams J.R., Wolf J., 2013. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Chang. 3, 827–832. [CrossRef] [Google Scholar]
  • Bayarri M., Berger J., 2004. The interplay of Bayesian and frequentist analysis. Stat. Sci., 19, 58–80. [CrossRef] [Google Scholar]
  • Bellvert J., Mata M., Vallverdú X., Paris C., Marsal J., 2020. Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decisionoriented vine water consumption model. Precis. Agric., 22, 319–341. [Google Scholar]
  • Bernardo S., Dinis L.-T., Machado N., Moutinho-Pereira J., 2018. Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agron. Sustain. Dev., 38, 1–20. [CrossRef] [Google Scholar]
  • Bernardo S., Dinis L-T., Luzio A., Machado N., Gonçalves A., Vives-Peris V., Pitarch-Bielsa M., López-Climent M.F., Malheiro A., Correia C.M., Gómez-Cadenas A., Moutinho-Pereira J., 2021a. Optimising grapevine summer stress responses and hormonal balance by applying kaolin in two Portuguese Demarcated Regions. OENO One, 1, 207–222. [CrossRef] [Google Scholar]
  • Bernardo S., Dinis L-T., Luzio A., Machado N., Vives-Peris V., López-Climent M.F., Gómez-Cadenas A., Zacarías L., Rodrigo M.J., Malheiro A., Correia C.M., Moutinho-Pereira J., 2021b. Particle film technology modulates xanthophyll cycle and photochemical dynamics of grapevines grown in the Douro Valley. Plant Physiol. Biochem., 162, 647–655. [CrossRef] [Google Scholar]
  • Bonada M., Jeffery D.W., Petrie P.R., Moran M.A., Sadras V.O., 2015. Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust. J. Grape Wine Res., 21, 240–253. [CrossRef] [Google Scholar]
  • Bonada M., Sadras V., Moran M., Fuentes S., 2013. Elevated temperature and water stress accelerate mesocarp cell death and shrivelling, and decouple sensory traits in Shiraz berries. Irrig. Sci., 31, 1317–1331. [CrossRef] [Google Scholar]
  • Bota J., Medrano H., Flexas J., 2004. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol., 162, 671–681. [CrossRef] [PubMed] [Google Scholar]
  • Brillante L., Belfiore N., Gaiotti F., Lovat L., Sansone L., Poni S., Tomasi D., 2016. Comparing kaolin and pinolene to improve sustainable grapevine production during drought. PloS one, 11, e0156631. [CrossRef] [PubMed] [Google Scholar]
  • Brito C., Dinis L.-T., Luzio A., Silva E., Goncalves A., Meijon M., Escandon M., Arrobas M., Rodrigues M. A., Moutinho-Pereira J., Correia C. M. 2019. Kaolin and salicylic acid alleviate summer stress in rainfed olive orchards by modulation of distinct physiological and biochemical responses. Sci. Hortic., 246, 201–211. [CrossRef] [Google Scholar]
  • Cannon A.J., Sobie S.R., Murdock T.Q., 2015. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim., 28, 6938–6959. [CrossRef] [Google Scholar]
  • Carvalho L.C., Coito J.L., Colaço S., Sangiogo M., Amâncio S., 2015. Heat stress in grapevine: the pros and cons of acclimation. Plant Cell Environ., 38, 777–789. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho A., Leal F., Matos M.J., Lima-Brito E., 2019. Heat stress tolerance assayed in four wine-producing grapevine varieties using a cytogenetic approach. Ciência Tec. Vitiv., 34, 61–70. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M., 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Ann. Bot., 105, 661–676. [CrossRef] [PubMed] [Google Scholar]
  • Cifre J., Bota J., Escalona J.M., Medrano H., Flexas J., 2005. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency? Agric. Ecosyst. Environ., 106, 159–170. [CrossRef] [Google Scholar]
  • Clemente N., Santos J.A., Fontes N., Graça A., Gonçalves I., Fraga H., 2022. Grapevine sugar concentration model (GSCM): A decision support tool for the Douro Superior winemaking region. Agronomy, 12, 1404. [CrossRef] [Google Scholar]
  • Cohen S.D., Tarara J.M., Kennedy J.A., 2008. Assessing the impact of temperature on grape phenolic metabolism. Anal. Chim. Acta, 621, 57–67. [CrossRef] [Google Scholar]
  • Conde A., Pimentel D., Neves A., Dinis L-T., Bernardo S., Correia C.M., Gerós H., Moutinho-Pereira J., 2016. Kaolin foliar application has a stimulatory effect on phenylpropanoid and flavonoid pathways in grape berries. Front. Plant Sci., 7, 1–14. [CrossRef] [Google Scholar]
  • Coniberti A., Ferrari A., Dellacassa E., Boido E., Carrau F., Gepp V., Disegna E., 2013. Kaolin over sun-exposed fruit affects berry temperature, must composition and wine sensory attributes of Sauvignon blanc. Eur. J. Agron., 50, 75–81. [CrossRef] [Google Scholar]
  • Coombe B.G., 1987. Influence of temperature on composition and quality of grapes. Acta Hortic., 206, 23–36. [CrossRef] [Google Scholar]
  • Costa R., Fraga H., Fonseca A., De Cortázar-Atauri I.G., Val M.C., Carlos C., Reis S., Santos J.A., 2019. Grapevine phenology of cv. Touriga Franca and Touriga Nacional in the Douro wine region: Modelling and climate change projections. Agronomy 9, 1–20. [Google Scholar]
  • Costello M.J., Daane K.M., 2003. Spider and leafhopper (Erythroneura spp.) response to vineyard ground cover. Environ. Entomol., 32, 1085–1098. [CrossRef] [Google Scholar]
  • Courault D., Seguin B., Olioso A., 2005. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrig. Drain., 19, 223–249. [CrossRef] [Google Scholar]
  • Daane K.M., Almeida R.P.P., Bell V.A., Walker J.T.S., Botton M., Fallahzadeh M., Mani M., Miano J.L., Sforza R., Walton V.M., Zaviezo T., 2012. Biology and management of mealybugs in vineyards. In: Arthropod Management in Vineyards: Pests, Approaches, and Future Directions. 271–307. Bostanian N.J., Charles V., Isaacs R. (eds.), Springer, Dordrecht. [Google Scholar]
  • Dayer S., Reingwirtz I., McElrone A.J., Gambetta G.A., 2019. Response and recovery of grapevine to water deficit: From genes to physiology. In: The Grape Genome. Compendium of Plant Genomes. 223–245. Cantu D., Walker M. (eds.), Springer, Cham., USA. [CrossRef] [Google Scholar]
  • Deloire A., Carbonneau A., Wang Z., Ojeda H. 2004. Vine and water – a short review. J. Int. Sci. Vigne Vin, 38, 1–13. [Google Scholar]
  • Demmig-Adams B., Adams W.W., 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol.,172, 11–21. [CrossRef] [PubMed] [Google Scholar]
  • Dinis L.-T., Bernardo S., Conde A., Pimentel D., Ferreira H., Felix L., Gerós H., Correia C. M., Moutinho-Pereira J., 2016. Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. J. Plant Physiol., 191, 45–53. [CrossRef] [Google Scholar]
  • Dinis L.-T., Bernardo S., Luzio A., Pinto G., Meijon M., Pinto-Marijuan M., Cotado A., Correia C. M., Moutinho-Pereira J., 2018a. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress. J. Plant Physiol., 220, 181–192. [CrossRef] [Google Scholar]
  • Dinis L.-T., Bernardo S., Matos C, Malheiro A.C., Flores R., Alves S., Costa C.P., Rocha S.M., Correia C., Luzio A., Moutinho-Pereira J., 2020. Overview of kaolin outcomes from vine to wine: Cerceal white variety case study. Agronomy 10, 1422. [CrossRef] [Google Scholar]
  • Dinis L.-T., Frioni T., Bernardo S., Correia C., Moutinho-Pereira J., 2022. Processed kaolin particles film, an environment friendly and climate change mitigation strategy tool for Mediterranean vineyards. In: Improving sustainable viticulture and winemaking practices. 165–178. Costa J.M., Catarino S., Escalona J.M., Comuzzo P. (eds.), Academic Press – Elsevier, London. [CrossRef] [Google Scholar]
  • Dinis L.-T., Malheiro A., Luzio A., Fraga H., Ferreira H., Gonçalves I., Pinto G., Correia C.M., Moutinho-Pereira J., 2018b. Improvement of grapevine physiology and yield under summer stress by kaolin-foliar application: water relations, photosynthesis and oxidative damage. Photosynthetica, 56, 641–651. [CrossRef] [Google Scholar]
  • Droulia F., Charalampopoulos I., 2021. Future climate change impacts on European viticulture: A review on recent scientific advances. Atmosphere, 12, 495. [CrossRef] [Google Scholar]
  • Duchêne E., Butterlin G., Dumas V., Merdinoglu D., 2011. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor. Appl. Genet., 124, 623. [Google Scholar]
  • Duchêne E., Huard F., Dumas V., Schneider C., Merdinoglu D., 2010. The challenge of adapting grapevine varieties to climate change. Clim. Res., 41, 193–204. [CrossRef] [Google Scholar]
  • Duchêne E., Huard F., Pieri P., 2014. Grapevine and climate change: what adaptations of plant material and training systems should we anticipate? Spécial Laccave. J. Int. Sci. Vigne Vin, 61–69. [Google Scholar]
  • Edwards E.J., Smithson L., Graham D.C., Clingeleffer P.R., 2011. Grapevine canopy response to a high-temperature event during deficit irrigation. Aust. J. Grape Wine Res., 17, 153–161. [CrossRef] [Google Scholar]
  • Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer R.J., Taylor K.E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958. [CrossRef] [Google Scholar]
  • Eynard A., Schumacher T.E., Lindstrom M.J., Malo D.D., 2005. Effects of agricultural management systems on soil organic carbon in aggegates of Ustolls and Usterts. Soil Tillage Res., 81, 253–263. [CrossRef] [Google Scholar]
  • Ferrari V., Disegna E., Dellacassa E., Coniberti, A., 2017. Influence of timing and intensity of fruit zone leaf removal and kaolin applications on bunch rot control and quality improvement of Sauvignon blanc grapes, and wines, in a temperate humid climate. Sci. Hortic., 223, 62–71. [CrossRef] [Google Scholar]
  • Ferreira M.I., Silvestre J., Conceição N., Malheiro A.C., 2012. Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques. Irrig. Sci., 30, 433–447. [CrossRef] [Google Scholar]
  • Flexas J., Escalona J.M., Medrano H., 1998. Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Funct. Plant Biol. 25, 893. [CrossRef] [Google Scholar]
  • Fraga H., García de Cortázar A.I., Malheiro A.C., Moutinho-Pereira J., Santos J.A., 2017. Viticulture in Portugal: A review of recent trends and climate change projections. OENO One, 51, 61–69. [CrossRef] [Google Scholar]
  • Fraga H., García de Cortázar A.I., Malheiro A.C., Santos J.A., 2016a. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Change Biol., 22, 3774–3788. [CrossRef] [Google Scholar]
  • Fraga H., Molitor D., Leolini L., Santos, J.A., 2020. What is the impact of heatwaves on European viticulture? A modelling assessment. Appl. Sci., 10, 3030. [CrossRef] [Google Scholar]
  • Fraga H., Santos J.A., 2021. Assessment of climate change impacts on chilling and forcing for the main fresh fruit regions in Portugal. Front. Plant Sci., 12. [CrossRef] [Google Scholar]
  • Fraga H., Santos J.A., Malheiro A.C., Moutinho-Pereira J., 2012. Climate change projections for the Portuguese viticulture using a multi-model ensemble. Ciência Téc. Vitiv., 27, 39–48. [Google Scholar]
  • Fraga H., Santos J.A., Moutinho-Pereira J., Carlos C., Silvestre J., Eiras-Dias J., Mota T., Malheiros A.C., 2016b. Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J. Agric. Sci., 154, 795–811. [CrossRef] [Google Scholar]
  • Frioni T., Saracino S., Squeri C., Tombesi S., Palliotti A., Sabbatini P., Magnanini E., Poni S., 2019. Understanding kaolin effects on grapevine leaf and whole-canopy physiology during water stress and re-watering. J. Plant Physiol., 242, 153020–153032. [CrossRef] [Google Scholar]
  • Frioni T., Tombesi S., Sabbatini P., Squeri C., Lavado Rodas N., Palliotti A., Poni S., 2020. Kaolin reduces ABA biosynthesis through the inhibition of neoxanthin synthesis in grapevines under water deficit. Int. J. Mol. Sci., 21, 4950–4965. [CrossRef] [Google Scholar]
  • Galmes J., Ribas-Carbo M., Medrano H., Flexas J., 2010. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. J. Exp. Bot., 62, 653–665. [Google Scholar]
  • Gambetta G.A., Herrera J.C., Dayer S., Feng Q., Hochberg U., Castellarin S.D., Zhang J., 2020. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. J. Exp. Bot., 71, 4658–4676. [CrossRef] [PubMed] [Google Scholar]
  • Geerts S., Raes D., 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag., 96, 1275–1284. [CrossRef] [Google Scholar]
  • Ghiat I., Mackey H., Al-Ansari T., 2021. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water, 13, 2523. [CrossRef] [Google Scholar]
  • Giese W.G., Velasco-Cruz C., Roberts L., Heitman J., Wolf T.K., 2014. Complete vineyard floor cover crops favorably limit grapevine vegetative growth. Sci. Hortic., 170, 256–266. [CrossRef] [Google Scholar]
  • Giorgi F., Lionello P., 2008. Climate change projections for the Mediterranean region. Glob. Planet. Change, 63, 90–104. [CrossRef] [Google Scholar]
  • Glenn D.M., 2012. The Mechanisms of plant stress mitigation by kaolin-based particle films and applications in horticultural and agricultural crops. Hortscience, 47, 710–711. [CrossRef] [Google Scholar]
  • Glenn D.M., Cooley N.M., Walker R.R., Clingeleffer P.R., Shellie K.C., 2010. Impact of kaolin particle film and water deficit on wine grape water use efficiency and plant water relations. Hortscience, 45, 1178–1187. [CrossRef] [Google Scholar]
  • Glenn D.M., Puterka G. J., 2005. Particle films: A new technology for agriculture. Hortic. Rev., 31, 1–44. [Google Scholar]
  • Gontier L., Dufourcq T., Gaviglio C., 2011. Total grass cover in vineyards: an innovating and promising soil management alternative to reduce the use of herbicides. In: 17th International GiESCO Symposium. Asti-Alba, Italy. [Google Scholar]
  • Greer D.H., Weedon M.M., 2011. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ., 35, 1060–1064. [Google Scholar]
  • Gutiérrez J.M., Jones R.G., Narisma G.T., Alves L.M., Amjad M., Gorodetskaya I.V., Grose M., Klutse N.A.B., Krakovska S., Li J., Martínez-Castro D., Mearns L.O., Mernild S.H., Ngo-Duc T., van den Hurk B., Yoon J.-H., 2021. Atlas. In: Climate change. The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds.), Cambridge University Press. [Google Scholar]
  • IPCC, 2021. Summary for policymakers. In: Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu B. Zhou R., (eds.), Cambridge Univ. [Google Scholar]
  • Iturbide M., Fernández J., Gutiérrez J.M., Bedia J., Cimadevilla E., Díez-Sierra J., Manzanas R., Casanueva A., Baño-Medina J., Milovac J., Herrera S., Cofiño A.S., San Martín D., García-Díez M., Hauser M., Huard D., Yelekci Ö., 2021. Repository supporting the implementation of FAIR principles in the IPCC-WG1 Atlas. Zenodo. [Google Scholar]
  • Jacob D., Petersen J., Eggert B., Alias A., Christensen O.B., Bouwer L.M., Braun A., Colette A., Déqué M., Georgievski G., Georgopoulou E., Gobiet A., Menut L., Nikulin G., Haensler A., Hempelmann N., Jones C., Keuler K., Kovats S., Kröner N., Kotlarski S., Kriegsmann A., Martin E., van Meijgaard E., Moseley C., Pfeifer S., Preuschmann S., Radermacher C., Radtke K., Rechid D., Rounsevell M., Samuelsson P., Somot S., Soussana J.-F., Teichmann C., Valentini R., Vautard R., Weber B., Yiou P., 2014. EUROCORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Chang., 14, 563–578. [CrossRef] [Google Scholar]
  • Jones G.V, White M.A., Cooper O.R., Storchmann K., 2005. Climate change and global wine quality. Clim. Change, 73, 319–343. [CrossRef] [Google Scholar]
  • Lange S., 2019. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev., 12, 3055–3070. [CrossRef] [Google Scholar]
  • Lecourieux F., Kappel C., Pieri P., Charon J., Pillet J., Hilbert G., Renaud C., Gomès E., Delrot S., Lecourieux D., 2017. Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing Cabernet Sauvignon grape berries. Front. Plant Sci., 8, 53. [CrossRef] [Google Scholar]
  • Leolini L., Costafreda-Aumedes S.A., Santos J., Menz C., Fraga H., Molitor D., Merante P., Junk J., Kartschall T., Destrac-Irvine A., van Leeuwen C.C., Malheiro A., Eiras-Dias J., Silvestre J., Dibari C., Bindi M., Moriondo M., 2020. Phenological model intercomparison for estimating grapevine budbreak date (Vitis vinifera L.) in Europe. Appl. Sci., 10, 3800. [CrossRef] [Google Scholar]
  • Lionello P., Abrantes F., Gacic M., Planton S., Trigo. R., Ulbrich U., 2014. The climate of the Mediterranean region: research progress and climate change impacts. Reg. Environ. Chang., 14, 1679–1684. [CrossRef] [Google Scholar]
  • Leolini L., Moriondo M., Fila G., Costafreda-Aumedes S., Ferrise R., Bindi M., 2018. Late spring frost impacts on future grapevine distribution in Europe. F. Crop. Res., 222, 197–208. [CrossRef] [Google Scholar]
  • Lobos G.A., Acevedo-Opazo C., Guajardo-Moreno A., Valdés-Gómez H., Taylor J.A., Laurie V. F., 2015. Effects of kaolin-based particle film and fruit zone netting on Cabernet Sauvignon grapevine physiology and fruit quality. OENO One, 49, 137–144. [CrossRef] [Google Scholar]
  • Lovisolo C., Perrone I., Carra A., Ferrandino A., Flexas J., Medrano H., Schubert A., 2010. Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Funct. Plant Biol. 37, 98. [CrossRef] [Google Scholar]
  • Macedo A., Gouveia S., Rebelo J., Santos J., Fraga, H., 2021. International trade, non-tariff measures and climate change: insights from Port wine exports. J Econ Stud., 48, 1228–1243. [CrossRef] [Google Scholar]
  • Magalhães N., 2015. Tratado de Viticultura: a videira, a vinha e o ‘terroir’. 607 p. Marques, F. Chaves Ferreira-Publicações, S.A., Lisboa. [Google Scholar]
  • Malheiro A.C., Pires M., Conceição N., Claro A.M., Dinis L.T., Moutinho-Pereira J., 2020. Linking sap flow and trunk diameter measurements to assess water dynamics of Touriga-Nacional grapevines trained in Cordon and Guyot systems. Agriculture, 10, 315. [CrossRef] [Google Scholar]
  • Malheiro A.C., Santos J.A., Fraga H., Pinto J. G., 2012. Future scenarios for viticultural climatic coning in Iberia. Acta Hortic. 931, 55–61. [CrossRef] [Google Scholar]
  • Mansour R., Suma P., Mazzeo G., La Pergola A., Pappalardo V., Grissa Lebdi K., Russo A., 2012. Interactions between the ant Tapinoma nigerrimum (Hymenoptera: Formicidae) and the main natural enemies of the vine and citrus mealybugs (Hemiptera: Pseudococcidae). Biocon. Sci. Technol. 22, 527–537. [CrossRef] [Google Scholar]
  • Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., and Zhou B., 2021. Climate Change. In: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 3–32, Cambridge University Press, Cambridge. [Google Scholar]
  • Maraun D., 2016. Bias correcting climate change simulations -a critical review. Curr. Clim. Chang. Reports, 2, 211–220. [CrossRef] [Google Scholar]
  • Marks J.N.J., Lines T.E.P., Penfold C., Cavagnaro T.R., 2022. Cover crops and carbon stocks: How under-vine management influences SOC inputs and turnover in two vineyards. Sci. Total Environ., 831, 154800. [CrossRef] [Google Scholar]
  • Marta A.D., Grifoni D., Mancini M., Storchi P., Zipoli G., Orlandini S., 2010. Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. J. Agric. Sci. 148, 657–666. [CrossRef] [Google Scholar]
  • MedECC, 2020. Climate and environmental change in the Mediterranean Basin – Current situation and risks for the future. In: First Mediterranean Assessment Report Union for the Mediterranean. 632. Cramer W., Guiot J., Marini K. (eds.), Plan Bleu, UNEP/MAP, Marseille. [Google Scholar]
  • Meinshausen M., Smith S.J., Calvin K., Daniel J.S., Kainuma M.L.T., Lamarque J.-F., Matsumoto K., Montzka S.A., Raper S.C.B., Riahi K., Thomson A., Velders G.J.M., van Vuuren D.P.P., 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change, 109, 213. [CrossRef] [Google Scholar]
  • Mira de Orduña R., 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int., 43, 1844–1855. [CrossRef] [Google Scholar]
  • Mirás-Avalos J.M., Araujo E.S., 2021. Optimization of vineyard water management: challenges, strategies, and perspectives. Water, 13, 746. [CrossRef] [Google Scholar]
  • Mosedale J.R., Abernethy K.E., Smart R.E., Wilson R.J., Maclean I.M.D., 2016. Climate change impacts and adaptive strategies: lessons from the grapevine. Glob. Chang. Biol., 22, 3814–3828. [CrossRef] [Google Scholar]
  • Moss R.H., Edmonds J.A., Hibbard K.A., Manning M.R., Rose S.K., van Vuuren D.P., Carter T.R., Emori S., Kainuma M., Kram T., Meehl G.A., Mitchell J.F.B., Nakicenovic N., Riahi K., Smith S.J., Stouffer R.J., Thomson A.M., Weyant J.P., Wilbanks T.J., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. [CrossRef] [PubMed] [Google Scholar]
  • Mozell M.R., Thach L., 2014. The impact of climate change on the global wine industry: Challenges & solutions. Wine Econ. Policy, 3, 81–89. [CrossRef] [Google Scholar]
  • Muscas E., Cocco A., Mercenaro L., Cabras M., Lentini A., Porqueddu C., Nieddu G.,2017. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agr. Ecosyst. Environ., 237, 203–212. [CrossRef] [Google Scholar]
  • Muscas E., Cocco A., Mercenaro L., Cabras M., Lentini A., Porqueddu C., Nieddu G., 2017. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ., 237, 203–212. [CrossRef] [Google Scholar]
  • Novara A., Minacapilli M., Santoro A., Rodrigo-Comino J., Carrubba A., Sarno M., Venezia G., Gristina L., 2019. Real cover crops contribution to soil organic carbon sequestration in sloping vineyard. Sci. Total Environ., 652, 300–306. [CrossRef] [Google Scholar]
  • OIV, 2021. State of Conditions report. 20 p. International Organisation of Vine and Wine, Paris. Available at: https://www.oiv.int/sites/default/files/documents/eng-stateof-the-world-vine-and-wine-sector-april-2022-v6_0.pdf (accessed on 20.08.2022) [Google Scholar]
  • Ollat N., Gaudillère J., 2000. Carbon balance in developing grapevine berries. Acta Hortic., 526, 345–350. [CrossRef] [Google Scholar]
  • Ovalle C., Del Pozo A., Peoples M.B., Lavín A., 2010. Estimating the contribution of nitrogen from legume cover crops to the nitrogen nutrition of grapevines using a 15 N dilution technique. Plant Soil, 334, 247–259. [CrossRef] [Google Scholar]
  • Palliotti A., Luciani E., Sforna A., Boco M., Squeri C., Frioni, T., 2019. Ondate di calore e protezione del vigneto con il caolino. VVQ, 5, 32–35. [CrossRef] [Google Scholar]
  • Palliotti A., Silvestroni O., Petoumenou D., 2009. Photosynthetic and photoinhibition behavior of two fieldgrown grapevine cultivars under multiple summer stresses. AJEV, 60, 189–198. [Google Scholar]
  • Pardini A., Faiello C., Longhi F., Mancuso S., Snowball R., 2002. Cover crop species and their management in vineyards and olive groves. Adv. Hortic. Sci., 16, 225–234. [Google Scholar]
  • Parker A., Cortázar-Atauri I.G., Chuine I., Barbeau G., Bois B., Boursiquot J.-M., Cahurel J.-Y., Claverie M., Dufourcq T., Gény L., Guimberteau G., Hofmann R.W., Jacquet O., Lacombe T., Monamy C., Ojeda H., Panigai L., Payan J.-C., Lovelle B.R., Rouchaud E., Schneider C., Spring J.-L., Storchi P., Tomasi D., Trambouze W., Trought M., van Leeuwen C. 2013. Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L Agric. For Meteorol., 180, 249–264. [CrossRef] [Google Scholar]
  • Peregrina F., Pérez-Álvarez E.P., García-Escudero E., 2014. The short term influence of aboveground biomass cover crops on C sequestration and β-glucosidase in a vineyard ground under semiarid conditions. Span. J. Agric. Res., 12, 1000–1007. [CrossRef] [Google Scholar]
  • Pons A., Allamy L., Schüttler A., Rauhut D., Thibon C., Darriet P., 2017. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One, 51, 141–146. [CrossRef] [Google Scholar]
  • Ramos M.C., Go D.T.H.C., Castro S., 2021. Spatial and temporal variability of cv. Tempranillo response within the Toro DO (Spain) and projected changes under climate change. OENO One, 55, 349–366. [CrossRef] [Google Scholar]
  • Ramos M.C., Jones G.V., Yuste J., 2018. Phenology of Tempranillo and Cabernet-Sauvignon varieties cultivated in the Ribera del Duero DO: observed variability and predictions under climate change scenarios. OENO One, 52. [CrossRef] [Google Scholar]
  • Ramos M.C., Martínez de Toda F., 2020. Variability in the potential effects of climate change on phenology and on grape composition of Tempranillo in three zones of the Rioja DOCa (Spain). Eur. J. Agron., 115, 126014. [CrossRef] [Google Scholar]
  • Rana G., Katerji N., 2000. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European J. Agron., 13, 125–153. [CrossRef] [Google Scholar]
  • Reis S., Fraga H., Carlos C., Silvestre J., Eiras-Dias J., Rodrigues P., Santos J.A., 2020. Grapevine phenology in four Portuguese wine regions: Modeling and predictions. Appl. Sci., 10, 3708. [CrossRef] [Google Scholar]
  • Rienth M., Scholasch T., 2019. State-of-the-art of tools and methods to assess vine water status. OENO One, 4, 619–637. [Google Scholar]
  • Rosenzweig C., Jones J.W., Hatfield J.L., Ruane A.C., Boote K.J., Thorburn P., Antle J.M., Nelson G.C., Porter C., Janssen S., Asseng S., Basso B., Ewert F., Wallach D., Baigorria G., Winter J.M., 2013. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol., 170, 166–182. [CrossRef] [Google Scholar]
  • Rötter R.P., Hoffmann M.P., Koch M., Müller C., 2018. Progress in modelling agricultural impacts of and adaptations to climate change. Curr. Opin. Plant Biol., 45, 255–261. [CrossRef] [Google Scholar]
  • Rummukainen M., 2016. Added value in regional climate modeling. WIREs Clim. Chang., 7, 145–159. [CrossRef] [Google Scholar]
  • Sadras V.O., Moran M.A., 2012. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res., 18, 115–122. [CrossRef] [Google Scholar]
  • Santesteban L.G., Miranda C., Urrestarazu J., Loidi M., Royo J.B., 2017. Severe trimming and enhanced competition of laterals as a tool to delay ripeining in Tempranillo vineyards under semiarid conditions. OENO One, 51, 191–203. [CrossRef] [Google Scholar]
  • Santos M., Fonseca A., Fraga H., Jones G. V, Santos, J.A., 2020a. Bioclimatic conditions of the Portuguese wine denominations of origin under changing climates. Int. J. Climatol., 40, 927–941. [CrossRef] [Google Scholar]
  • Santos J.A., Fraga H., Malheiro A. C., Moutinho-Pereira J., Dinis L.-T., Correia C., Moriondo M., Leolini L., Dibari C., Costafreda-Aumedes S., Kartschall T., Menz C., Molitor D., Junk J., Beyer M., Schultz H.R., 2020b. A Review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci., 10, 3092. [CrossRef] [Google Scholar]
  • Savoi S., Wong D.C.J., Arapitsas P., Miculan M., Bucchetti B., Peterlunger E., Fait A., Mattivi F., Castellarin S.D., 2016. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol., 16, 67. [CrossRef] [Google Scholar]
  • Schultz H.R., Stoll M., 2010. Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust. J. Grape and Wine Res., 16, 4–24. [CrossRef] [Google Scholar]
  • Seidel S.J., Palosuo T., Thorburn P., Wallach D., 2018. Towards improved calibration of crop models – Where are we now and where should we go? Eur. J. Agron., 94, 25–35. [CrossRef] [Google Scholar]
  • Sgubin, G., Swingedouw, D., Dayon, G., García de Cortázar-Atauri, I., Ollat, N., Pagé, C., van Leeuwen, C., 2018. The risk of tardive frost damage in French vineyards in a changing climate. Agric. For. Meteorol., 250-251, 226–242. [CrossRef] [Google Scholar]
  • Shellie K., King B.A., 2013. Kaolin particle film and water deficit influence Malbec leaf and berry temperature, pigments, and photosynthesis. Am. J. Enol. Vitic., 64, 223–230. [CrossRef] [Google Scholar]
  • Smart R.E., 1974. Aspects of water relations of the grapevine. AJEV, 25, 84–91. [Google Scholar]
  • Suter B., Destrac Irvine A., Gowdy M., Dai Z., van Leeuwen C., 2021. Adapting wine grape ripening to Global Change requires a multi-trait approach. Front. Plant Sci., 12. [CrossRef] [Google Scholar]
  • Suzuki N., Rivero R.M., Shulaev V., Blumwald E., Mittler R., 2014. Abiotic and biotic stress combinations. New Phytol., 203, 32–43. [CrossRef] [PubMed] [Google Scholar]
  • Tao F., Palosuo T., Rötter R.P., Díaz-Ambrona C.G.H., Inés Mínguez M., Semenov M.A., Kersebaum K.C., Cammarano D., Specka X., Nendel C., Srivastava A.K., Ewert F., Padovan G., Ferrise R., Martre P., Rodríguez L., Ruiz-Ramos M., Gaiser T., Höhn J.G., Salo T., Dibari C., Schulman A.H., 2020. Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agric. For. Meteorol., 281, 107851. [CrossRef] [Google Scholar]
  • Tao F., Rötter R.P., Palosuo T., Gregorio Hernández Díaz-Ambrona C., Mínguez M.I., Semenov M.A., Kersebaum K.C., Nendel C., Specka X., Hoffmann H., Ewert F., Dambreville A., Martre P., Rodríguez L., Ruiz-Ramos M., Gaiser T., Höhn J.G., Salo T., Ferrise R., Bindi M., Cammarano D., Schulman A.H., 2018. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Glob. Chang. Biol., 24, 1291–1307. [CrossRef] [PubMed] [Google Scholar]
  • Taylor K.E., Stouffer R.J., Meehl G.A., 2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 93, 485–498. [CrossRef] [Google Scholar]
  • The CMIP6 landscape, 2019. Nat. Clim. Chang., 9, 727. [CrossRef] [Google Scholar]
  • Thomson L.J., Hoffmann A.A., 2013. Spatial scale of benefits from adjacent woody vegetation on natural enemies within vineyards. Biol. Control, 64, 57–65. [CrossRef] [Google Scholar]
  • Tombesi S., Nardini A., Farinelli D., Palliotti A., 2014. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Physiol. Plant., 152, 453–464. [CrossRef] [Google Scholar]
  • Tuel, A., Eltahir, E.A.B., 2020. Why is the Mediterranean a climate change hot spot? J. Clim., 33, 5829–5843. [CrossRef] [Google Scholar]
  • Valverde P., Serralheiro R., de Carvalho M., Maia R., Oliveira B., Ramos V., 2015. Climate change impacts on irrigated agriculture in the Guadiana river basin (Portugal). Agric. Water Manag., 152, 17–30. [CrossRef] [Google Scholar]
  • van Huyssteen L., Weber H.W., 1980. The effect of selected minimum and conventional tillage practices in vineyard cultivation on vine performance. S. Afr. J. Enol. Vitic., 1, 77–83. [Google Scholar]
  • van Leeuwen C., Destrac-Irvine A., 2017. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One, 51, 147–154. [CrossRef] [Google Scholar]
  • van Leeuwen C., Destrac-Irvine A., Dubernet M., Duchêne M., Gowdy M., Marguerit E., Pieri P., Parker A., Rességuier L., Ollat, O., 2019. An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9, 514. [CrossRef] [Google Scholar]
  • van Vuuren D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G.C., Kram T., Krey V., Lamarque J.-F., Masui T., Meinshausen M., Nakicenovic N., Smith S.J., Rose S.K., 2011. The representative concentration pathways: an overview. Clim. Change, 109, 5. [CrossRef] [Google Scholar]
  • Venios X., Korkas E., Nisiotou A., Banilas G., 2020. Grapevine responses to heat stress and global warming. Plants, 9, 1754. [CrossRef] [Google Scholar]
  • Veres A., Petit S., Conord C., Lavigne C., 2013. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric. Ecosyst. Environ., 166, 110–117. [CrossRef] [Google Scholar]
  • Villalobos-González L., Alarcón N., Bastías R., Pérez C., Sanz R., Peña-Neira Á., Pastenes C., 2022. Photoprotection is achieved by photorespiration and modification of the leaf incident light, and their extent is modulated by the stomatal sensitivity to water deficit in grapevines. Plants, 11, 1050. [CrossRef] [PubMed] [Google Scholar]
  • Wada H., Shackel K.A., Matthews M.A., 2008. Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for pre-veraison turgor loss in berries. Planta, 227, 1351–1361. [CrossRef] [PubMed] [Google Scholar]
  • Wallach D., Nissanka S.P., Karunaratne A.S., Weerakoon W.M.W., Thorburn P.J., Boote K.J., Jones J.W., 2017. Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: A case study on rice. Eur. J. Agron., 88, 53–62. [CrossRef] [Google Scholar]
  • Wallach D., Thorburn P.J., 2017. Estimating uncertainty in crop model predictions: Current situation and future prospects. Eur. J. Agron., 88, A1–A7. [CrossRef] [Google Scholar]
  • Yang C., Fraga H., Ieperen W., Van Santos J.A., 2017. Assessment of irrigated maize yield response to climate change scenarios in Portugal. Agric. Water Manag., 184, 178–190. [CrossRef] [Google Scholar]
  • Yang C., Fraga H., van Ieperen W., Santos J.A., 2018. Modelling climate change impacts on early and late harvest grassland systems in Portugal. Crop Pasture Sci., 69, 821–836. [CrossRef] [Google Scholar]
  • Yang C., Fraga H., van Ieperen W., Santos J.A., 2020. Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal. Agric. Syst., 182, 102844. [CrossRef] [Google Scholar]
  • Yang C., Fraga H., van Ieperen W., Trindade H., Santos J.A., 2019. Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Clim. Change, 154, 159–178. [CrossRef] [Google Scholar]
  • Yang C., Menz C., De Abreu Jaffe M.S., Costafreda-Aumedes S., Moriondo M., Leolini L., Torres-Matallana A., Molitor D., Junk J., Fraga H., van Leeuwen C., Santos J.A., 2022a. Projections of climate change impacts on flowering-veraison water Deficits for Riesling and Müller-Thurgau in Germany. Remote Sens., 14, 1519. [CrossRef] [Google Scholar]
  • Yang C., Menz C., Fraga H., Costafreda-Aumedes S., Leolini L., Ramos M.C., Molitor D., van Leeuwen C., Santos J.A., 2022b. Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions. Agric. Water Manag., 261, 107349. [CrossRef] [Google Scholar]
  • Yang C., Menz C., Fraga H., Reis S., Machado N., Malheiro A.C., Santos J.A., 2021. Simultaneous calibration of grapevine phenology and yield with a soil–plant–atmosphere system model using the frequentist method. Agronomy, 11, 1659. [CrossRef] [Google Scholar]
  • Yan Y., Song C., Falginella L., Castellarin S.D., 2020. Day temperature has a stronger effect than night temperature on anthocyanin and flavonol accumulation in “Merlot” (Vitis vinifera L.) grapes during ripening. Front. Plant Sci., 11, 1095. [CrossRef] [Google Scholar]
  • Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez‐ Cadenas A., 2017. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant., 162, 2–12. [Google Scholar]
  • Zha Q., Xi X, He Y., Yin X., Jiang A., 2021. Effect of shorttime high-temperature treatment on the photosynthetic performance of different heat-tolerant grapevine cultivars. Photochem. Photobiol., 97, 763–769. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.