Open Access
Issue
Ciência Téc. Vitiv.
Volume 37, Number 2, 2022
Page(s) 126 - 138
DOI https://doi.org/10.1051/ctv/ctv20223702126
Published online 12 October 2022
  • Aguiar A., Carlos C., Bastos M., Mexia A., 2003. Ataques de traça da uva Lobesia botrana (Den. & Shiff.) em diferentes castas das regiões dos Vinhos Verdes e do Douro. Em Actas do 6º Encontro Nacional de Proteção Integrada. Castelo Branco, Portugal [Google Scholar]
  • Barzman M., Barberi P., Birch A.N.E., Boonekamp P., Dachbrodt-Saaydeh S., Graf B., Hommel B., Jensen J.E., Kiss J., Kudsk P., Lamichhane J.R., Messéan A., Moonen A.C., Ratnadass A., Ricci P., Sarah J-L., Sattin M., 2015. Eight principles of integrated pest management. Agron. Sustain. Dev., 35, 1199–1215 [CrossRef] [Google Scholar]
  • Bernardo S., Luzio A., Machado N., Ferreira H., Vives-Peris V., Malheiro A.C., Correia C., Gómez-Cadenas A., Moutinho-Pereira J., Dinis L-T., 2021. Kaolin Application Modulates Grapevine Photochemistry and Defence Responses in Distinct Mediterranean-Type Climate Vineyards. Agronomy, 11(3), 477. [CrossRef] [Google Scholar]
  • Böhm J., 2011. Atlas das castas da Península Ibérica: História, Terroir, Ampleografia. 318 p. Dinalivro. [Google Scholar]
  • Brière J.F., Pracros P., 1998. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol., 27, 94–101. [CrossRef] [Google Scholar]
  • Caffarra A., Rinaldi M., Eccel E., Rossi V., Pertot I., 2012. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ., 148, 89-101. [CrossRef] [Google Scholar]
  • Carlos C., Alves F., Torres L., 2007. Importância dos ataques de traça da uva, Lobesia botrana (Den. & Shiff.) na Região Demarcada do Douro. Vititécnica, 4, 23-24. [Google Scholar]
  • Carlos C., Gonçalves F., Oliveira I., Torres L., 2018. Is a biofix necessary for predicting the flight phenology of Lobesia botrana in Douro Demarcated Region vineyards? Crop Prot., 110, 57-64. [CrossRef] [Google Scholar]
  • Carlos C., Gonçalves F., Sousa S., Nóbrega M., Manso J., Salvação J., Costa J., Gaspar C., Domingos J., Silva L., Fernandes D., Val M., Franco J.C., Aranha J., Thistlewood H., Torres L., 2014. Success of mating disruption against the European grapevine moth, Lobesia botrana (Den. & Schiff): a whole farm case-study in the Douro Wine Region. IOBC-WPRS Bull., 105, 93–102. [Google Scholar]
  • Coscollá R., 1980. Incidencia de los factores climatológicos en la evolución de las plagas y enfermedades de las plantas. Bol. San. Veg. Plagas, 6, 123–139. [Google Scholar]
  • Coscollá R., 1998. Polillas del racimo (Lobesia botrana Den. y Schiff.). In: Los parásitos de la vid. 29-42. G. Barrios et al. (eds.), MAPA-Mundi Prensa, Madrid. [Google Scholar]
  • Cozzi G., Haidukowski H., Perrone G., Visconti A., Logrieco A., 2009. Influence of Lobesia botrana field control on black aspergilli rot and ochratoxin A contamination in grapes. J. Food Prot., 72, 894–897. [CrossRef] [PubMed] [Google Scholar]
  • Delbac L., Lecharpentier P., Thiery D., 2010. Larval instars determination for the European Grapevine Moth (Lepidoptera: Tortricidae) based on the frequency distribution of head-capsule widths. Crop Prot., 29, 623-630. [CrossRef] [Google Scholar]
  • DGAV, 2018. Flavescência dourada situação atual da doença no território nacional. 9 p. [Google Scholar]
  • Fermaud M., 1998. Cultivar Susceptibility of Grape Berry Clusters to Larvae of Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol., , 974–980. [CrossRef] [Google Scholar]
  • Fermaud M., Giboulot A., 1992. Influence of Lobesia botrana larvae on field severity of Botrytis rot on grape berries. Plant Dis., 76, 404–409 [CrossRef] [Google Scholar]
  • Gutierrez A. P., Ponti L., Gilioli G., Baumgärtner J., 2018. Climate warming effects on grape and grapevine moth (Lobesia botrana) in the Palearctic region. Agric. For. Entomol., 20(2), 255-271. [CrossRef] [Google Scholar]
  • Iltis C., Louâpre P., Pecharová K., Thiéry D., Zito S., Bois B., Moreau J., 2019. Are life-history traits equally affected by global warming? A case study combining a multi-trait approach with fine-grain climate modeling. J. Insect Physiol., 117, 103916. [CrossRef] [Google Scholar]
  • Iltis C., Louâpre P., Vogelweith F., Thiéry D., Moreau J., 2021. How to stand the heat? Post-stress nutrition and developmental stage determine insect response to a heat wave. J. Insect Physiol, 131, 104214. [CrossRef] [Google Scholar]
  • Iltis C., Martel G., Thiéry D., Moreau J., Louâpre P., 2018. When warmer means weaker: high temperatures reduce behavioural and immune defences of the larvae of a major grapevine pest. J. Pest Sci., 91, 1315-1326. [CrossRef] [Google Scholar]
  • Iltis C., Moreau J., Pecharová K., Thiéry D., Louâpre P., 2020. Reproductive performance of the European grapevine moth Lobesia botrana (Tortricidae) is adversely affected by warming scenario. J. Pest Sci., 93(2), 679-689. [CrossRef] [Google Scholar]
  • Ioriatti C., Anfora G., Tasin M., De Cristofaro A., Witzgall P., Lucchi A., 2011. Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol., 104, 1125–1137. [CrossRef] [Google Scholar]
  • IVDP, 2021. Área de vinha e sua composição. Disponível em https://www.ivdp.pt/ (accessed on 03.05.2021). [Google Scholar]
  • Jones G., Alves F., 2012. Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. Int. J. Glob. Warm., 4, 383-406. [CrossRef] [Google Scholar]
  • Maher N., Thiéry D., Stadler E., 2006. Oviposition by Lobesia botrana is stimulated by sugars detected by contact chemoreceptors. Physiol. Entomol., 31, 14–22. [CrossRef] [Google Scholar]
  • Markheiser A., Rid M., Biancu S., Gross J., Hoffmann C., 2018. Physical factors influencing the oviposition behaviour of European grapevine moths Lobesia botrana and Eupoecilia ambiguella. J. Appl. Entomol., 142, 201–210. [CrossRef] [Google Scholar]
  • Markheiser A., Rid M., Biancu S., Gross J., Hoffmann C., 2020. Tracking short-range attraction and oviposition of european grapevine moths affected by volatile organic compounds in a four-chamber olfactometer. Insects, 11, 45. [CrossRef] [Google Scholar]
  • Martín-Vertedor D., Ferrero-García J., Torres-Vila L. M., 2010. Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agric. For. Entomol., 12, 169-176. [CrossRef] [Google Scholar]
  • Miller J.R., Gut L.J., 2015. Mating disruption for the 21st century: matching technology with mechanism. Environ. Entomol., 44(3), 427–453. [CrossRef] [PubMed] [Google Scholar]
  • Moosavi F., Cargnus E., Pavan. F., Zandigiacomo P., 2017. Mortality of Eggs and Newly Hatched Larvae of Lobesia botrana (Lepidoptera: Tortricidae) exposed to high temperatures in the laboratory. Environ. Entomol., 46, 700-707. [CrossRef] [PubMed] [Google Scholar]
  • Moutinho-Pereira J., Dinis L-T., Fraga H., Ferreira H., Gonçalves I., Oliveira A.A., Falco V., Malheiro A.C., Correia C.M., 2015. Potencialidades do caulino como protetor solar das folhas e cachos no período estival na Região Demarcada do Douro. Agrotec, dezembro 2015, 50-56. [Google Scholar]
  • Pavan F., Stefanelli G., Villani A., Cargnus, E., 2018. Influence of grapevine cultivar on the second generations of Lobesia botrana and Eupoecilia ambiguella. Insects, 9, 8. [CrossRef] [Google Scholar]
  • Pease C., López-Olguín J., Pérez-Moreno I., Marco-Mancebón V., 2016. Effects of kaolin on Lobesia botrana (Lepidoptera: Tortricidae) and its compatibility with the natural enemy, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). J. Econ. Entomol., 109, 740–745. [CrossRef] [PubMed] [Google Scholar]
  • Reis S., Martins J., Gonçalves F., Carlos C., Santos J.A., 2021. European grapevine moth in the Douro region: voltinism and climatic scenarios. OENO One, 2, 335-351. [CrossRef] [Google Scholar]
  • Rid M., Markheiser A., Hoffmann C., Gross J., 2018. Waxy bloom on grape berry surface is one important factor for oviposition of European grapevine moths. J. Pest Sci., 91, 1225–1239. [CrossRef] [Google Scholar]
  • Rid M., Markheiser A., Stein S., Hoffmann C., Gross J., 2019. Volatiles of several grapevine cultivars emitted at different phenological stages linked to discriminatory ability of grapevine moths. J. Plant Dis. Prot., 126, 115–127. [CrossRef] [Google Scholar]
  • Savopoulou-Soultani M., Milonas P.G., Skoulakis G.E., 1996. Development and life fertility tables for Lobesia botrana (Lepidoptera: Tortricidae) at constant temperatures. Recent Res. Dev. Entomol., 1, 73–81. [Google Scholar]
  • Seixas M., Carlos C., Gonçalves F., Ferreira A., Salvação J., Oliveira J.C., Torres L., Oliveira P.S. 2022. Confusão sexual contra a traça-da-uva, Lobesia botrana, na região Demarcada do Douro usando dois modelos de difusores de feromona: ISONET-LTT BIO® E ISONET-LTT®. Ciência Téc. Vitiv., 37 (1), 100-115. [CrossRef] [EDP Sciences] [Google Scholar]
  • Snjezana H., 2004. Susceptibility of some grapevine cultivars in area of vineyards of Podgorica on the attack of European grape berry moth - Lobesia botrana Den. Et Schiff. (Lepidoptera, Tortricidae). Acta Hortic., 652, 355–358. [CrossRef] [Google Scholar]
  • Tacoli F., Cargnus E., Moosavi F., Zandigiacomo P., Pavan F., 2018. Efficacy and mode of action of kaolin and its interaction with bunch-zone leaf removal against Lobesia botrana on grapevines. J. Pest Sci., 92, 465-475. [Google Scholar]
  • Tasin M., Anfora G., Bäckman A., Ioriatti C., Cristofaro A., Pozzolini E., Leonardelli E., Lucchi A., 2008. Volatiles from grape drive the oviposition of Lobesia botrana at short distance. IOBC/wprs Bull., 36, 351–353. [Google Scholar]
  • Tasin M., Anfora G., Ioriatti C., Carlin S., Cristofaro A., Schmidt, S., Bengtsson M., Versini G., Witzgall, P. 2005. Antennal and Behavioral Responses of Grapevine Moth Lobesia botrana Females to Volatiles from Grapevine. J. Chem. Ecol., 31, 77–87. [CrossRef] [PubMed] [Google Scholar]
  • Tasin M., Lucchi A., Ioriatti C., Mraihi M., De cristofaro A., Boger Z., Anfora G., 2011. Oviposition response of the moth Lobesia botrana to sensory cues from a host plant. Chem. Senses, 36, 633–639. [CrossRef] [PubMed] [Google Scholar]
  • Varandas S., Teixeira M., Marques J., Aguiar A., Alves A., Bastos M., 2004. Glucose and fructose levels on grape skin: Interference in Lobesia botrana behaviour. Anal. Chim. Acta, 513, 351–355. [CrossRef] [Google Scholar]
  • Venios X., Korkas E., Nisiotou A., Banilas G., 2020. Grapevine responses to heat stress and global warming. Plants, 9, 1754. [CrossRef] [Google Scholar]
  • Witzgall P., Kirsch P., Cork A., 2010. Sex pheromones and their impact on pest management. J. Chem. Ecol., 36(1), 80–100. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.