Open Access
Review
Issue
Ciência Téc. Vitiv.
Volume 37, Number 1, 2022
Page(s) 13 - 28
DOI https://doi.org/10.1051/ctv/ctv20223701013
Published online 16 March 2022
  • Adrian M., Jeandet P., Breuil A.C., Levite D., Debord S., Bessis R., 2000. Assay of resveratrol and derivative stilbenes in wines by direct injection high performance liquid chromatography. Am. J. Enol. Vitic., 51, 37–41. [Google Scholar]
  • Aggarwal B.B., Shishodia S., 2005. Resveratrol in health and disease. 712 p. CRC Press Taylor & Francis Group. [Google Scholar]
  • Atanacković M., Petrović A., Jović S., Bukarica L.G., Bursać M., Cvejić J., 2012. Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chem., 131, 513–518. [CrossRef] [Google Scholar]
  • Averilla J.N., Oh J., Wu Z., Liu K.H., Jang C.H., Kim H.J., Kim J.S., Kim, J.S., 2019. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments. J. Sci. Food Agric., 99, 4043–4053. [Google Scholar]
  • Barlass M., Miller R.M., Douglas T.J., 1987. Development of methods for screening grapevines forresistance to infection by downy mildewIIResveratrol production. Am. J. Enol. Vitic., 38, 65–68. [Google Scholar]
  • Basholli-Salihu M., Schuster R., Mulla D., Praznik W., Viernstein H., Mueller M., 2016. Bioconversion of piceid to resveratrol by selected probiotic cell extracts. Bioprocess Biosyst. Eng., 39, 1879–1885. [CrossRef] [PubMed] [Google Scholar]
  • Bavaresco L., Lucini L., Busconi M., Flamini R., de Rosso M., 2016. Wine resveratrol: From the ground up. Nutrients, 8, 222. [CrossRef] [PubMed] [Google Scholar]
  • Bay Karabulut A., 2008. Resveratrol and its effects. Turkey Clin. J. Med. Sci., 28, 166–169. [Google Scholar]
  • Bednarska S., Dabrowa A., Kisala J., Kasprzyk I., 2019. Antioxidant properties and resveratrol content of Polish Regent wines from Podkarpacie region. Czech J. Food Sci., 37, 252–259. [CrossRef] [Google Scholar]
  • Boutegrabet L., Fekete A., Hertkorn N., Papastamoulis Y., Waffo-Téguo P., Mérillon J.M., Jeandet P., Gougeon R.D., Schmitt-Kopplin P., 2011. Determination of stilbene derivatives in Burgundy red wines by ultra-high-pressure liquid chromatography. Anal. Bioanal. Chem., 401, 1513–1521. [CrossRef] [PubMed] [Google Scholar]
  • Burns J., Yokota T., Ashihara H., Lean M.E.J., Crozie A., 2002. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 50, 3337–3340. [CrossRef] [PubMed] [Google Scholar]
  • Cacho J.I., Campillo N., Viñas P., Hernández-Córdoba M., 2013. Stir bar sorptive extraction with gas chromatography–mass spectrometry for the determination of resveratrol, piceatannol and oxyresveratrol isomers in wines. J. Chromatogr. A, 1315, 21–27. [CrossRef] [Google Scholar]
  • Cai L., Koziel J.A., Dharmadhikari M., van Leeuwen J.H., 2009. Rapid determination of trans-resveratrol in red wine by solid-phase microextraction with on-fiber derivatization and multidimensional gas chromatography–mass spectrometry. J. of Chromatogr. A, 1216, 281–287. [CrossRef] [Google Scholar]
  • Cantos E., Espín J.C., Tomás-Barberán F.A., 2001. Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: a new “functional” fruit? J. Agric. Food Chem., 49, 5052–5058. [CrossRef] [PubMed] [Google Scholar]
  • Cantos E., Espín J.C., Tomás-Barberán F.A, 2002. Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. J. Agric. Food Chem., 50, 6322–6329. [CrossRef] [PubMed] [Google Scholar]
  • Cantos E., Espín J.C., Fernández M.J., Oliva J., Tomás-Barberán F.A., 2003. Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J. Agric. Food Chem., 51, 1208–1214. [CrossRef] [PubMed] [Google Scholar]
  • Caridi A., Sidari R., Maria A., Teresa G., Pellicanò M., Sicari V., Zappia C., Poiana M., 2017. Test of four generations of Saccharomyces cerevisiae concerning their effect on antioxidant phenolic compounds in wine. Eur. Food Res. Technol., 243, 1287–1294. [CrossRef] [Google Scholar]
  • Castaldo L., Narváez A., Izzo L., Graziani G., Gaspari A., Di Minno G., Ritieni A., 2019. Red wine consumption and cardiovascular health. Molecules, 24, 3626. [CrossRef] [Google Scholar]
  • Cheng L., Yan B., Chen K., Jiang Z., Zhou C., Cao J., Qian W., Li J., Sun L., Ma J., Ma Q., Sha H., 2018. Resveratrol-induced downregulation of NAF-1 enhances the sensitivity of pancreatic cancer cells to gemcitabine via the ROS/Nrf2 signaling pathways. Oxid. Med. Cell. Longev., 2018, 9482018. [Google Scholar]
  • Christenson J., Whitby S.J., Mellor D., Thomas J., McKune A., Roach P.D., Naumovski N., 2016. The effects of resveratrol supplementation in overweight and obese humans: A systematic review of randomized trials. Metab. Syndr. Relat. Disord., 14, 323–333. [CrossRef] [PubMed] [Google Scholar]
  • Clare S.S., Skurray G.R., Shalliker R.A., 2005. Effect of yeast strain selection on the concentration of cis- and trans-resveratrol and resveratrol glucoside isomers in wine. Aust. J. Grape Wine Res., 11, 9–14. [CrossRef] [Google Scholar]
  • Claus H., Mojsov K., 2018. Enzymes for wine fermentation: Current and perspective applications. Fermentation, 4, 1–19. [Google Scholar]
  • Counet C., Callemien D., Collin S., 2006. Chocolate and cocoa: New sources of trans-resveratrol and trans-piceid. Food Chem., 98, 649–657. [CrossRef] [Google Scholar]
  • Craciun A.L., Gutt G., 2020. Determination of trans-resveratrol in romanian commercial wines by reversed-phase HPLC. Food and Environment Safety, 19, 323 – 331. [Google Scholar]
  • De Villiers A., Albert P., Tredoux A.G., Nieuwoudt H.H., 2012. Analytical techniques for wine analysis: An African perspective; a review. Anal. Chim. Acta, 730, 2–23. [CrossRef] [Google Scholar]
  • Di Fabio E., Incocciati A., Palombarini F., Boffi A., Bonamore A., Macone A., 2020. Ethylchloroformate derivatization for GC–MS Analysis of resveratrol isomers in red Wwine. Molecules, 25, 4603. [CrossRef] [Google Scholar]
  • Ector B.J., Magee J.B., Hegwood C.P., Coign M.J., 1996. Resveratrol concentration in muscadine berries, juice, pomace, purees, seeds, and wines. Am. J. Enol. Vitic., 47, 57–62. [Google Scholar]
  • Elshaer M., Chen Y., Wang X.J., Tang X., 2018. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci., 207, 340–349. [CrossRef] [Google Scholar]
  • Fabjanowicz M., Płotka-Wasylka J., Namieśnik J., 2018. Detection, identification and determination of resveratrol in wine. Problems and challenges. TrAC Trends Analyt. Chem., 103, 21–33. [CrossRef] [Google Scholar]
  • Fan E., Lin S., Du D., Jia Y., Kang L., Zhang K., 2011. Current separative strategies used for resveratrol determination from natural sources. Anal. Methods, 3, 2454–2462. [CrossRef] [Google Scholar]
  • Fernández-Marín M.I., Guerrero R.F., Puertas B., García-Parrilla M.C., Collado I.G., Cantos-Villar E., 2013. Impact of preharvest and postharvest treatment combinations on increase of stilbene content in grape. OENO One, 47, 203–212. [Google Scholar]
  • Fernández-Marín M.I., Puertas B., Guerrero R.F., García-Parrilla M.C., Cantos-Villar E., 2014. Preharvest methyl jasmonate and postharvest UVC treatments: increasing stilbenes in wine. J. Food Sci., 79, 310–317. [Google Scholar]
  • Figueiredo E.A.D., Alves N.F.B., Monteiro M.M.D.O., Cavalcanti C.D.O., Silva T.M.S., Silva T.M.G., Braga V.D.A., Oliveira E.D.J., 2017. Antioxidant and antihypertensive effects of a chemically defined fraction of syrah red wine on spontaneously hypertensive rats. Nutrients, 9, 10–23. [Google Scholar]
  • Filardo S., Di Pietro M., Mastromarino P., Sessa R., 2020. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol. Ther., 214, 107613. [CrossRef] [Google Scholar]
  • Flamini R., Zanzotto A., de Rosso M., Lucchetta G., Vedova A.D., Bavaresco L., 2016. Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection. Physiol. Mol. Plant Pathol., 93, 112–118. [CrossRef] [Google Scholar]
  • Flores G., Del Castillo M.L.R., 2016. New procedure to obtain polyphenol-enriched grapes based on the use of chemical elicitors. Plant Foods Hum. Nutr., 71, 239–244. [CrossRef] [PubMed] [Google Scholar]
  • Franco M.A., Coloru G.C., Del Caro A., Emonti G., Farris G.A., Manca G., Massa T.G., Pinna G., 2002. Variability of resveratrol (3, 5, 4′-trihydroxystilbene) content in relation to the fermentation processes by Saccharomyces cerevisiae strains. Eur. Food Res. Technol., 214, 221–225. [CrossRef] [Google Scholar]
  • Fu Q., Cui Q., Yang Y., Zhao X., Song X., Wang G., Bai L., Chen S., Tian Y., Zou Y., Li L., Yue G., Jia R., Yin Z., 2018. Effect of resveratrol dry suspension on immune function of piglets. Evid. Based Complement. Alternat. Med., 10. [Google Scholar]
  • Gaensly F., Agustini B.C., da Silva G.A., Picheth G., Bonfim T.M.B., 2015. Autochthonous yeasts with β-glucosidase activity increase resveratrol concentration during the alcoholic fermentation of Vitis labrusca grape must. J. Funct. Foods, 19, 288–295. [CrossRef] [Google Scholar]
  • Gao L., Chu Q., Ye J., 2002. Determination of trans-Resveratrol in wines, herbs and health food by capillary electrophoresis with electrochemical detection. Food Chem., 78, 255–260. [CrossRef] [Google Scholar]
  • Garde-Cerdán T., Portu J., López R., Santamaría P., 2015. Effect of foliar applications of proline, phenylalanine, urea, and commercial nitrogen fertilizers on stilbene concentrations in Tempranillo musts and wines. Am. J. Enol. Vitic., 66, 542–547. [CrossRef] [Google Scholar]
  • Geana E.I., Dinca O.R., Ionete R.E., Artem V., Niculescu V.C., 2015. Monitoring trans-resveratrol in grape berry skins during ripening and in corresponding wines by HPLC. Food Technol. Biotechnol., 53, 73–80. [CrossRef] [Google Scholar]
  • Gerogiannaki-Christopoulou M., Athanasopoulos P., Kyriakidis N., Gerogiannaki I.A., Spanos M., 2006. trans-Resveratrol in wines from the major Greek red and white grape varieties. Food Control, 17, 700–706. [CrossRef] [Google Scholar]
  • Goldberg D.M., Yan J., Ng E., Diamandis E.P., Karumanchiri A., Soleas G., Waterhouse A.L., 1995. A global survey of trans-resveratrol concentrations in commercial wines. Am. J. Enol. Vitic., 46, 159–165. [Google Scholar]
  • González-Barrio R., Beltrán D., Cantos E., Gil M.I., Espín J.C., Tomás-Barberán F.A., 2006. Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. ‘Superior' white table grapes. J. Agric. Food Chem., 54, 4222–4228. [CrossRef] [PubMed] [Google Scholar]
  • González-Barrio R., Vidal-Guevara M.L., Tomás-Barberán F.A., Espín J.C., 2009. Preparation of a resveratrol-enriched grape juice based on ultraviolet C-treated berries. Innov. Food Sci. Emerg. Technol., 10, 374–382. [Google Scholar]
  • González-Candelas L., Gil J.V., Lamuela-Raventos R.M., Ramón D., 2000. The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine. Int. J. Food Microbiol., 59, 179–183. [CrossRef] [Google Scholar]
  • Grieco F., Carluccio M.A., Giovinazzo G., 2019. Autochthonous Saccharomyces cerevisiae starter cultures enhance polyphenols content, antioxidant activity, and anti-inflammatory response of Apulian red wines. Foods, 8, 453. [CrossRef] [Google Scholar]
  • Guerrero R.F., Puertas B., Fernández M.I., Piñeiro Z., Cantos-Villar E., 2010a. UVC-treated skin-contact effect on both white wine quality and resveratrol content. Food Res. Int., 43, 2179–2185. [CrossRef] [Google Scholar]
  • Guerrero R.F., Puertas B., Jiménez M.J., Cacho J., Cantos-Villar E., 2010b. Monitoring the process to obtain red wine enriched in resveratrol and piceatannol without quality loss. Food Chem., 122, 195–202. [CrossRef] [Google Scholar]
  • Guerrero R.F., Valls-Fonayet J., Richard T., Cantos-Villar E., 2020. A rapid quantification of stilbene content in wine by ultra-high pressure liquid chromatography–mass spectrometry. Food Control, 108, 106821. [CrossRef] [Google Scholar]
  • Guld Z.S., Rácz A., Tima H., Kállay M., Nyitrainé Sárdy D., 2019. Effects of aging in oak barrels on the trans-resveratrol and anthocyanin concentration of red wines from Hungary. Acta Aliment., 48, 349–357. [CrossRef] [Google Scholar]
  • Gutiérrez-Escobar R., Aliaño-González M.J., Cantos-Villar E., 2021. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules, 26, 718. [CrossRef] [PubMed] [Google Scholar]
  • Hasan M.M., Bae H., 2017. An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules, 22, 294. [CrossRef] [Google Scholar]
  • Hasan M.M., Baek K.H., 2013. Induction of resveratrol biosynthesis in grape skins and leaves by ultrasonication treatment. Korean J. Hortic. Sci. Technol., 31, 496–502. [CrossRef] [Google Scholar]
  • Hasan M.M., Yun H.K., Kwak E.J., Baek K.H., 2014. Preparation of resveratrol-enriched grape juice from ultrasonication treated grape fruits. Ultrason. Sonochem., 21, 729–734. [CrossRef] [Google Scholar]
  • Hernández T., Estrella I., Pérez-Gordo M., Alegría E.G., Tenorio C., Ruiz-Larrrea F., Moreno-Arribas M.V, 2007. Contribution of malolactic fermentation by Oenococcus oeni and Lactobacillus plantarum to the changes in the nonanthocyanin polyphenolic composition of red wine. J. Agric. Food Chem., 55, 5260–5266. [CrossRef] [PubMed] [Google Scholar]
  • Hoang T., 2021. An approach of fatty acids and resveratrol in the prevention of COVID-19 severity. Phyther. Res., 35, 2269–2273. [CrossRef] [Google Scholar]
  • Hurst W.J., Glinski J.A., Miller K.B., Apgar J., Davey M.H., Stuart D.A., 2008. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J. Agric. Food Chem., 56, 8374–8378. [CrossRef] [PubMed] [Google Scholar]
  • Irnidayanti Y., Sutiono D.R., 2019. Tempeh & soybean seed coat: The alternative sources of trans-resveratrol as neuroprotective agents. Int. J. Morphol., 37, 1164–1171. [CrossRef] [Google Scholar]
  • Jang M., Sheu S., Wan, C., Yeh Y., Sung K., 2009. Optimization analysis of the experimental parameters on the extraction process of Propolis. Lect. Notes Eng. Comput. Sci., 2175, 1295–1299. [Google Scholar]
  • Jeandet P., Delaunois B., Aziz A., Donnez D., Vasserot Y., Cordelier S., Courot E., 2012. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J. Biomed. Biotechnol., 2012, 579089. [CrossRef] [PubMed] [Google Scholar]
  • Kalili K.M., de Villiers A., 2011. Recent developments in the HPLC separation of phenolic compounds. J. Sep. Sci., 34, 854–876. [CrossRef] [Google Scholar]
  • Kammerer D., Carle R., 2009. Evolution of polyphenols during vinification and wine storage. Funct. Plant Sci. Biotechnol., 3, 46–56. [Google Scholar]
  • Keskin N., Noyan T., Kunter B., 2009. Health from grape with rResveratrol. Turkey Clin. J. Med. Sci., 29, 1273–1279. [Google Scholar]
  • Khoddami A., Wilkes M.A., Roberts T.H., 2013. Techniques for analysis of plant phenolic compounds. Molecules, 18, 2328–2375. [CrossRef] [PubMed] [Google Scholar]
  • Kontaxakis E., Trantas E., Ververidis F., 2020. Resveratrol: A fair race towards replacing sulfites in wines. Molecules, 25, 2378. [CrossRef] [Google Scholar]
  • Kostadinović S., Wilkens A., Stefova M., Ivanova V., Vojnoski B., Mirhosseini H., Winterhalter P., 2012. Stilbene levels and antioxidant activity of Vranec and Merlot wines from Macedonia: Effect of variety and enological practices. Food Chem., 135, 3003–3009. [CrossRef] [Google Scholar]
  • Lambert M., Meudec E., Verbaere A., Mazerolles G., Wirth J., Masson G., Cheynier V., Sommerer N., 2015. A high-throughput UHPLC-QqQ-MS method for polyphenol profiling in rosé wines. Molecules, 20, 7890–7914. [CrossRef] [PubMed] [Google Scholar]
  • Li Y., Zhu W., Tao J.P., Xin P., Liu M.Y., Li J.B., Wei M., 2013. Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem. Biophys. Res. Commun., 438, 270–276. [CrossRef] [Google Scholar]
  • Lin S.C., Ho C.T., Chuo W.H., Li S., Wang T.T., Lin C.C., 2017. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 17, 1–10. [CrossRef] [Google Scholar]
  • Liu W., Liu C., Yang C., Wang L., Li S., 2010. Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem., 122, 475–481. [CrossRef] [Google Scholar]
  • Malaguarnera L., 2019. Influence of resveratrol on the immune response. Nutrients, 11, 1–24. [Google Scholar]
  • Marinella M.A., 2020. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int. J. Clin. Pract., 74, 25–27. [CrossRef] [Google Scholar]
  • Mattivi F., Vrhovsek U., Malacarne G., Masuero D., Zulini L., Stefanini M., Mose C., Velasco R., Guella G., 2011. Profiling of resveratrol oligomers, important stress metabolites, accumulating in the leaves of hybrid Vitis vinifera (Merzling × Teroldego) genotypes infected with Plasmopara viticola. J. Agric. Food Chem., 59, 5364–5375. [CrossRef] [PubMed] [Google Scholar]
  • Moreno-Labanda J.F., Mallavia R., Pérez-Fons L., Lizama V., Saura D., Micol V., 2004. Determination of piceid and resveratrol in Spanish wines deriving from Monastrell (Vitis vinifera L.) grape variety. J. Agric. Food Chem., 52, 5396–5403. [CrossRef] [PubMed] [Google Scholar]
  • Naiker M., Anderson S., Johnson J.B., Mani J.S., Wakeling L., Bowry V., 2020. Loss of trans-resveratrol during storage and ageing of red wines. Aust. J. Grape Wine Res., 26, 385–387. [CrossRef] [Google Scholar]
  • Pannu N., Bhatnagar A., 2019. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother., 109, 2237–2251. [CrossRef] [Google Scholar]
  • Pappalardo G., Di Vita G., Zanchini R., La Via G., D’Amico M., 2019. Do consumers care about antioxidants in wine? The role of naturally resveratrol-enhanced wines in potential health-conscious drinkers’ preferences. Br. Food J., 122, 2689–2705. [CrossRef] [Google Scholar]
  • Pastor R.F., Restani P., Di Lorenzo C., Orgiu F., Teissedre P.L., Stockley C., Ruf J. C., Quini C.I., Garcìa Tejedor N., Gargantini R., Aruani C., Prieto S., Murgo M., Videla R., Penissi A., Iermoli R.H., 2019. Resveratrol, human health and winemaking perspectives. Crit. Rev. Food Sci. Nutr., 59, 1237–1255. [CrossRef] [PubMed] [Google Scholar]
  • Pérez-Navarro J., García Romero E., Gómez-Alonso S., Izquierdo Cañas P.M., 2018. Comparison between the phenolic composition of Petit Verdot wines elaborated at different maceration/fermentation temperatures. Int. J. Food Prop., 21, 996–1007. [CrossRef] [Google Scholar]
  • Pezet R., Cuenat P., 1996. Resveratrol in wine: extraction from skin during fermentation and post-fermentation standing of must from Gamay grapes. Am. J. Enol. Vitic., 47, 287–290. [Google Scholar]
  • Poklar Ulrih N., Opara R., Skrt M., Košmerl T., Wondra M., Abram V., 2020. Part I. Polyphenols composition and antioxidant potential during ‘Blaufränkisch’ grape maceration and red wine maturation, and the effects of trans-resveratrol addition. Food Chem. Toxicol., 137, 111–122. [Google Scholar]
  • Poussier M., Guilloux-Benatier M., Torres M., Heras E., Adrian M., 2003. Influence of different maceration techniques and microbial enzymatic activities on wine stilbene content. Am. J. Enol. Vitic., 54, 261–266. [Google Scholar]
  • Prazeres E.S., dos Santos M.B., Barreto A.D.A., Coutinho J.P., da Silva E.G.P., Melo S.C., de Jesus R.M., Lôbo I.P., 2021. Use of hexamethyldisilazane as a silanizing agent in microwave-assisted derivatization for determining phenolic compounds in wine by gas chromatography. Microchem. J., 161, 105785. [CrossRef] [Google Scholar]
  • Preti R., Vieri S., Vinci G., 2016. Biogenic amine profiles and antioxidant properties of Italian red wines from different price categories. J. Food Compos. Anal., 46, 7–14. [CrossRef] [Google Scholar]
  • Ramdani L.H., Bachari K., 2020. Potential therapeutic effects of resveratrol against SARS-CoV-2. Acta Virol., 64, 276–280. [CrossRef] [Google Scholar]
  • Rathburn H., Bell P., Cook S., Mayberry D.D., Geye E., Goodric R., 2020. A statistical analysis of trans-resveratrol in grape cane from ten varieties of cultivated wine grapes (Vitis spp.). Texas J. Sci., 72. [CrossRef] [Google Scholar]
  • Rayne S., Karacabey E., Mazza G., 2008. Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind. Crops Prod., 27, 335–340. [CrossRef] [Google Scholar]
  • Robles A.D., Fabjanowicz M., Płotka-Wasylka J., Konieczka P., 2019. Organic acids and polyphenols determination in Polish wines by ultrasound-assisted solvent extraction of porous membrane-packed liquid samples. Molecules, 24, 4376. [CrossRef] [Google Scholar]
  • Rocchetti G., Ferrari F., Trevisan M., Bavaresco L., 2021. Impact of climatic conditions on the resveratrol concentration in blend of Vitis vinifera L. cvs. Barbera and Croatina Grape Wines. Molecules, 26, 401. [CrossRef] [Google Scholar]
  • Rodríguez-Cabo T., Rodríguez I., Ramil M., Silva A., Cela R., 2016. Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry. J. Chromatogr. A, 1442, 107–117. [CrossRef] [Google Scholar]
  • Roldán A., Palacios V., Caro I., Pérez L., 2010. Evolution of resveratrol and piceid contents during the industrial winemaking process of sherry wine. J. Agric. Food Chem., 58, 4268–4273. [CrossRef] [PubMed] [Google Scholar]
  • Salehi B., Mishra A.P., Nigam M., Sener B., Kilic M., Sharifi-Rad M., Fokou P.V.T., Martins N., Sharifi-Rad J., 2018. Resveratrol: A double-edged sword in health benefits. Biomedicines, 6, 1–20. [Google Scholar]
  • Sartor S., Toaldo I.M., Panceri C.P., Caliari V., Luna A.S., de Gois J.S., Bordignon-Luiz M.T., 2019. Changes in organic acids, polyphenolic and elemental composition of rosé sparkling wines treated with mannoproteins during over-lees aging. Food Res. Int., 124, 34–42. [CrossRef] [Google Scholar]
  • Segade S.R., Vincenzi S., Giacosa S., Rolle L., 2019. Changes in stilbene composition during postharvest ozone treatment of ‘Moscato bianco’winegrapes. Food Res. Int., 123, 251–257. [CrossRef] [Google Scholar]
  • Sener H., Yildirim H.K., 2013. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines. Food Sci. Technol. Int., 19, 523–533. [CrossRef] [PubMed] [Google Scholar]
  • Shrikanta A., Kumar A., Govindaswamy V., 2015. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol., 52, 383–390. [CrossRef] [PubMed] [Google Scholar]
  • Sinha D., Sarkar N., Biswas J., Bishayee A., 2016. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol., 40, 209–232. [CrossRef] [Google Scholar]
  • Sorrentino A., Boscaino F., Cozzolino R., Volpe M.G., Ionata E., La Cara F., 2012. Autochthonous fermentation starters for the production of Aglianico wines. Chem. Eng. Trans., 27, 211–216. [Google Scholar]
  • Spanilá M., Pazourek J., Farková M., Havel J., 2005. Optimization of solid-phase extraction using artificial neural networks in combination with experimental design for determination of resveratrol by capillary zone electrophoresis in wines. J. Chromatogr. A, 1084, 180–185. [CrossRef] [Google Scholar]
  • Sun B., Ferrão C., Spranger M. I., 2003. Effect of wine style and winemaking technology on resveratrol levels in wines. Ciência Téc. Vitiv., 18, 77–91. [Google Scholar]
  • Sun B., Ribes A.M., Leandro M.C., Belchior A.P., Spranger M I., 2006. Stilbenes: quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal. Chim. Acta, 563, 382–390. [CrossRef] [Google Scholar]
  • Sun C., Wu Z., Wang Z., Zhang H., 2015. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid. Based Complement. Altern. Med., 2015, 595393. [Google Scholar]
  • Surguladze M.A., Bezhuashvili M.G., 2017. Impact of wine technology on the variability of resveratrol and piceids in Saperavi (Vitis vinifera L.). Ann. Agrar. Sci., 15, 137–140. [CrossRef] [Google Scholar]
  • Suzuki M., Nakabayashi R., Ogata Y., Sakurai N., Tokimatsu T., Goto S., Suzuki M., Jasinski M., Martinoia E., Otagaki S., Matsumoto S., Saito K., Shiratake K., 2015. Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation. Plant Physiol., 168, 47–59. [CrossRef] [PubMed] [Google Scholar]
  • Szkudelska K., Szkudelski T., 2010. Resveratrol, obesity and diabetes. Eur. J. Pharmacol., 635, 1–8. [CrossRef] [Google Scholar]
  • Tao Y., García J.F., Sun D.W., 2014. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Crit. Rev. Food Sci. Nutr., 54, 817–835. [CrossRef] [PubMed] [Google Scholar]
  • Tian B., Liu J., 2020. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 100, 1392–1404. [CrossRef] [PubMed] [Google Scholar]
  • Tokusoglu O., Unal M.K., Yemis F., 2005. Determination of the phytoalexin resveratrol (3,5,4′-Trihydroxystilbene) in peanuts and pistachios by High-Performance Liquid Chromatographic Diode Array (HPLC-DAD) and Gas Chromatography-Mass Spectrometry (GC-MS). J. Agric. Food Chem., 53, 5003–5009. [CrossRef] [PubMed] [Google Scholar]
  • Tomić A., Zulj M.M., Andabaka Z., Tomaz I., Jakobović S., Jeromel A., 2018. Influence of pectolytic enzymes and selected yeast strains on the chemical composition of blackberry wines. Polish J. Food Nutr. Sci., 68, 263–272. [CrossRef] [Google Scholar]
  • Valls J., Millán S., Martí M.P., Borràs E., Arola L., 2009. Advanced separation methods of food anthocyanins, isoflavones and flavanols. J. of Chromatogr. A, 1216, 7143–7172. [CrossRef] [Google Scholar]
  • Vernhet A., 2019. Red wine clarification and stabilization. In: Red Wine Technology. 237–251. Morata A. (ed.), Academic Press, Madrid. [CrossRef] [Google Scholar]
  • Vries K., de Strydom M., Steenkamp V., 2018. Bioavailability of resveratrol: Possibilities for enhancement. J. Herb. Med., 11, 71–77. [CrossRef] [Google Scholar]
  • Vuong Q.V., 2017. Utilisation of bioactive compounds from agricultural and food waste. 405 p. CRC Press, Boca Raton, FL. [Google Scholar]
  • Wang Y., Halls C., Zhang J., Matsuno M., Zhang Y., Yu O., 2011. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab. Eng., 13, 455–463. [CrossRef] [Google Scholar]
  • Weiskirchen S., Weiskirchen R., 2016. Resveratrol: How much wine do you have to drink to stay healthy? Adv. Nutr. An Int. Rev. J., 7, 706–718. [CrossRef] [Google Scholar]
  • Wu N., Clausen A.M., 2007. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. J. Sep. Sci., 30, 1167–1182. [CrossRef] [Google Scholar]
  • Yunoki K., Yasui Y., Naito A., Masanori K., Ohnishi M., 2001. Comparative analysis of concentration of trans- and cis-resveratrol in must and wine from eleven different grapevines grown in Hokkaido, Northern Japan. J. Oleo Sci., 50, 895–903. [CrossRef] [Google Scholar]
  • Zhang K., Li W., Ju Y., Wang X., Sun X., Fang Y.,Chen K., 2021. Transcriptomic and metabolomic basis of short-and long-term post-harvest UV-C application in regulating grape berry quality development. Foods, 10, 625. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.