Open Access
Ciência Téc. Vitiv.
Volume 37, Number 1, 2022
Page(s) 1 - 12
Published online 18 February 2022
  • Alvares C.A., Stape J.L., Sentelhas P.C. de Moraes Gonçalves J.L., Sparovek G., 2013. Köppen's climate classification map for Brazil. Meteorol. Z., 22, 711–728. [CrossRef] [Google Scholar]
  • Cai Z., Kastell A., Mewis I., Knorr D., Smetanska I., 2012. Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult., 108, 401–409. [CrossRef] [Google Scholar]
  • Calvo P., Nelson L., Kloepper J.W., 2014. Agricultural uses of plant biostimulants. Plant and soil, 383, 3–41. [CrossRef] [Google Scholar]
  • Carreño J., Martinez A., Almela L., Fernández-López J. A., 1995. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int., 28, 373–377. [CrossRef] [Google Scholar]
  • Castillo S., Navarro D., Zapata P.J., Guillén F., Valero D., Serrano M., Martínez-Romero D., 2010. Antifungal efficacy of Aloe vera in vitro and its use as a pre-harvest treatment to maintain postharvest table grape quality. Postharvest Biol. Technol., 57, 183–188. [CrossRef] [Google Scholar]
  • Chrysargyris A., Nikou A., Tzortzakis N., 2016. Effectiveness of Aloe vera gel coating for maintaining tomato fruit quality. N. Z. J. Crop Hortic. Sci., 44, 203–217. [CrossRef] [Google Scholar]
  • Dai Z.W., Ollat N., Gomés E., Decroocq S., Tandonnet L.B., Pieri P., Hilbert G., Kappel C., van Leeuwen C., Vivin P., Delrot S., 2011. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am. J. Enol. Vitic., 62, 413–425. [CrossRef] [Google Scholar]
  • Delgado de la Torre M.P., Priego-Capote F., Luque de Castro M.D., 2015. Tentative identification of polar and mid-polar compounds in extracts from wine lees by liquid chromatography-tandem mass spectrometry in high-resolution mode: Identification of polar compounds in wine lees. J Mass Spectrom, 50, 826–837. [CrossRef] [PubMed] [Google Scholar]
  • Deng Q., Xia H., Lin L., Wang J., Yuan L., Kangnuing L., Zhang J., Lv X., Liang D. 2019. 'SUNRED', a natural extract-based biostimulant, application stimulates anthocyanin production in the skins of grapes. Sci. Rep., 9, 1–8. [Google Scholar]
  • Downey M.O., Dokoozlian N.K., Krstic M.P., 2006. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am. J. Enol. Vitic., 57, 257–268. [Google Scholar]
  • Fan D., Hodges D. M., Zhang J., Kirby C.W., Ji X., Locke S.J., Critchley A.T., Prithiviraj B., 2011. Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem., 124,195–202. [CrossRef] [Google Scholar]
  • Fan D., Kandasamy S., Hodges D.M., Critchley A.T., Prithiviraj B., 2014. Pre-harvest treatment of spinach with Ascophyllum nodosum extract improves post-harvest storage and quality. Sci. Hortic., 170, 70–74. [CrossRef] [Google Scholar]
  • Frioni T., Sabbatini P., Tombesi S., Norrie J., Poni S., Gatti M., Palliotti A., 2018. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic., 232, 97–106. [Google Scholar]
  • Fu Z., Xu P., He S., Teixeira da Silva J., Tanaka M., 2011. Dynamic changes in enzyme activities and phenolic content during in vitro rooting of tree peony (Paeonia suffruticosa Andr.) plantlets. Maejo Int. J.Sci.Technol., 5, 252–265. [Google Scholar]
  • Gauillard F., Richard-Forget F., Nicolas J., 1993. New spectrophotometric assay for polyphenol oxidase activity. Anal Biochem., 215, 59–65. [CrossRef] [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Martínez-Lapuente L., Costa B.S., Rubio-Bretón P., Pérez-álvarez E.P., 2020. Phenolic composition of Tempranillo Blanco (Vitis vinifera L.) grapes and wines after biostimulation via a foliar seaweed application. J. Sci. Food Agric., 100, 825–835. [CrossRef] [PubMed] [Google Scholar]
  • Gutiérrez-Gamboa G., Moreno-Simunovic Y., 2021. Seaweeds in viticulture: a review focused on grape quality. Ciencia Tec. Vitiv., 36, 9–21. [Google Scholar]
  • He F., Liang N.-N., Mu L., Pan Q.-H., Wang J., Reeves M.J., Duan C.-Q., 2012. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules, 17, 1571–1601. [CrossRef] [PubMed] [Google Scholar]
  • He J.-J., Liu Y.-X., Pan Q.-H., Cui X.-Y., Duan C.-Q., 2010. Different Anthocyanin Profiles of the Skin and the Pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) Grape Berries. Molecules, 15, 1141–1153. [CrossRef] [PubMed] [Google Scholar]
  • Hoffmann J., Carvalho I., Barbieri R., Rombaldi C., Chaves F., 2016. Butia spp. (Arecaceae) LC-MS-based metabolomics for species and geographical origin discrimination. J Agr Food Chem., 65, 523–532. [Google Scholar]
  • Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A.T., Craigie J.S., Norrie J., Prithiviraj B., 2009. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul., 28, 386–399. [CrossRef] [Google Scholar]
  • Kose C., Erdal S., Kaya O., Atici O., 2011. Comparative evaluation of oxidative enzyme activities during adventitious rooting in the cuttings of grapevine rootstocks. J. Sci. Food Agric., 15, 738–741. [CrossRef] [Google Scholar]
  • Koushesh Saba M., Emamifar A., 2016. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol., 114, 29–35. [CrossRef] [Google Scholar]
  • Koyama R., Colombo R.C., Silva Borges W.F., Silvestre J.P., Hussain I., Shahab M., Ahmed S., Prudencio S.H., Teodoro de Souza R., Roberto S.R., 2019. Abscisic Acid Application Affects Color and Acceptance of the New Hybrid 'BRS Melodia' Seedless Grape Grown in a Subtropical Region. HortScience, 54, 1055–1060. [CrossRef] [Google Scholar]
  • Koyama R., de Assis A.M., Yamamoto L.Y., Borges W.F., de Sá Borges R., Prudêncio S.H., Roberto S.R., 2014. Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from 'Isabel'grapes (Vitis labrusca L.). HortScience, 49, 460–464. [CrossRef] [Google Scholar]
  • Koyama R., Roberto S.R., de Souza R.T., Borges W.F.S., Anderson M., Waterhouse A.L., Cantu D., Fidelibus M.W., Blanco-Ulate B., 2018. Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca Table Grapes in a Subtropical Region. Front. Plant Sci., 9, 323. [CrossRef] [Google Scholar]
  • Lees D.H., Francis F. J., 1972. Standardization of pigment analysis in cranberries. HortScience, 7, 83–84. [Google Scholar]
  • Neto F.J.D., Tecchio M.A., Pimentel A., Vedoato B.T.F., Lima G.P.P., Roberto S.R., 2017. Effect of ABA on colour of berries, anthocyanin accumulation and total phenolic compounds of'Rubi' table grape (Vitis vinifera). Aust. J. Crop Sci., 11, 199. [CrossRef] [Google Scholar]
  • OIV, 2015. Compendium Of International Methods Of Wine And Must Analysis. Organisation International de la Vigne et du Vin, Paris. [Google Scholar]
  • Ollé D., Guiraud J., Souquet J., Terrier N., Ageorges A., Cheynier V., Verries C. 2011. Effect of pre-and post-veraison water deficit on proanthocyanidin and anthocyanin accumulation during Shiraz berry development. Aust. J. Grape Wine Res., 17, 90–100. [CrossRef] [Google Scholar]
  • Pessenti I.L., Ayub R.A., Botelho R.V., 2019. Defoliation, application of S-ABA and vegetal extracts on the quality of grape and wine Malbec cultivar. Rev. Bras. Frut., 41, 1–10. [CrossRef] [Google Scholar]
  • Pessenti I.L., Ayub R.A., Botelho R.V., Roberto S.R., 2020. Melhoria da qualidade da uva de mesa 'Primitivo' por desfolha manual e aplicação de ácido abscísico. Res. Soc. Dev., 9, e1039119647. [CrossRef] [Google Scholar]
  • R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available at: (accessed on 29.04.2018) [Google Scholar]
  • Rodrigues A.A.C., Bezerra Neto E., Coelho R.S.B, 2006. Indução de resistência a Fusarium oxysporum f. sp. Tracheiphilum em Caupi: Eficiência de indutores abióticos e atividade enzimática elicitada. Fitopatol. brasil., 31, 492–499. [CrossRef] [Google Scholar]
  • Rufato L., Lerin S., Allebrandt R., Fagherazzi A.F., Mario A.E., Boff C.E., Kretzschmar A.A., 2014. Abscisic acid applications increases color in grapes and juice of 'Isabel'. Acta Hortic., 1115, 217–224. [Google Scholar]
  • Salvi L., Brunetti C., Cataldo E., Niccolai A., Centritto M., Ferrini F., Mattii G.B., 2019. Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem., 139, 21–32. [PubMed] [Google Scholar]
  • Sandhu A.K., Gray D.J., Lu J., Gu L., 2011. Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem., 126, 982–988. [CrossRef] [Google Scholar]
  • Santaniello A., Scartazza A., Gresta F., Loreti E., Biasone A., Di Tommaso D., Piaggesi A., Perata P., 2017. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression. Front Plant Sci., 8, 1362. [CrossRef] [Google Scholar]
  • Singleton V.L., Rossi J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158. [Google Scholar]
  • Seymour G. B., Østergaard L., Chapman N.H., Knapp S., Martin C., 2013. Fruit Development and Ripening. Annu. Rev. Plant Biol., 64, 219–241. [CrossRef] [PubMed] [Google Scholar]
  • Sogvar O.B., Koushesh Saba M., Emamifar A., 2016. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol., 114, 29–35. [CrossRef] [Google Scholar]
  • Sun Y., Liu Q., Xi B., Dai H., 2019. Study on the regulation of anthocyanin biosynthesis by exogenous abscisic acid in grapevine. Sci. Hortic., 250, 294–301. [CrossRef] [Google Scholar]
  • Taskos D., Stamatiadis S., Yvin J.-C., Jamois F., 2019. Effects of an Ascophyllum nodosum (L.) Le Jol. Extract on grapevine yield and berry composition of a Merlot vineyard. Sci. Hortic., 250, 27–32. [CrossRef] [Google Scholar]
  • Triches W.S., Eckhardt D.P., Silva E.N., Gabbardo M., Chaves F.C., Hoffmann, J.F., Zandoná G.P., Rombaldi C.V., 2020. Physico-chemical characterization of wines produced by different rootstock and'Vitis vinifera'cv. Tannat clones in vineyards of subtropical climate region. Aust. J. Crop Sci., 14, 1506–1518. [CrossRef] [Google Scholar]
  • Urbanek H., Kuzniak-Gebarowska E., Herka K., 1991. Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol. Plant, 13, 43–50. [Google Scholar]
  • Viencz T., Oliari I.C.R., Ayub R.A., Faria C.M.D.R., Botelho R.V., 2020. Postharvest quality and brown rot incidence in plums treated with Ascophyllum nodosum extract. Semin Cienc Agrar, 41, 753–766. [CrossRef] [Google Scholar]
  • Willemse C.M., Stander M.A., Vestner J., Tredoux A.G.J., de Villiers A., 2015. Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography (HILIC) × Reversed-Phase Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of Anthocyanins and Derived Pigments in Red Wine. Anal. Chem., 87, 12006–12015. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto L.Y., Koyama R., Assis A.M., Borges W.F.S., Oliveira I.R., Roberto S.R., 2015. Color of berry and juice of "Isabel" grape treated with abscisic acid in different ripening stages. Pesqui. Agropecu. Bras., 50, 1160–1167. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.