Open Access
Issue
Ciência Téc. Vitiv.
Volume 35, Number 2, 2020
Page(s) 120 - 132
DOI https://doi.org/10.1051/ctv/20203502120
Published online 16 October 2020
  • Agut C., Rodríguez-Lovelle B., Fabre F., 2005. Incidence du portegreffe sur le comportement du cépage Syrah. Proc. XIVth International GESCO Viticulture Congress . Geisenheim, Germany, 2 , 148-154. [Google Scholar]
  • Alves F., Eldmann M., Costa J., Costa P., Costa P.L., Symington C., 2012. Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region. Proc. IXth International Terroirs Congress Dijon/Reims, France. Available at: http://www.advid.pt/imagens/artigos/13492830176271.pdf (accessed on 14.07.2019). [Google Scholar]
  • Andrade A., Aires A., Almeida C., 2005. Agronomic behavior of grapevine Fernão Pires on three rootstocks, at Demarcated Region of Bairrada, Portugal. Proc. XIV International GESCO Viticulture Congress . Geisenheim, Germany, 2 , 134-139. [Google Scholar]
  • Baggiolini M., 1952. Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Rev. romande Agric. Vitic. Arboric ., 8 , 4-6. [Google Scholar]
  • Brighenti A., Rufato L., Wurz D., Brighenti E., 2012. Effect of different rootstocks on productivity and quality of ‘Cabernet Sauvignon’ grapevine produced in high altitude. Acta Hortic ., 931 , 385-388. [Google Scholar]
  • Brites J., Pedroso V., 2000. Castas recomendadas na Região do Dão. 24 p. Direcção Regional de Agricultura da Beira Litoral. Centro de Estudios Vitivinícolas do Dão. [Google Scholar]
  • Cabello F., Muñoz-Organero G., Saiz R., Gaforio L., Cabezas J. A., de Andrés M. T., 2012. Situación del patrimonio varietal de vid en España. Bull. O.I.V ., 85 (971-973), 23-47. [Google Scholar]
  • Chomé P.M., Sotés V., Benayas F., Cayuela M., Hernández M., Cabello F., Ortiz J., Rodríguez I., Chaves J., 2006. Variedades de vid. Registro de variedades comerciales. 303 p. Ministerio de Agricultura, Pesca y Alimentación (Ed.), Madrid. [Google Scholar]
  • Clingeleffer P., Morales N., Davis H., Smith H., 2019. The significance of scion × rootstock interactions. OENO One , 2 , 335-346. [Google Scholar]
  • Costa E., Cosme F., Jordão A.M., Mendes-Faia A., 2014. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. J. Int. Sci. Vigne Vin, 48 , 51-62. [Google Scholar]
  • Cunha J., Teixeira-Santos M., Veloso M., Carneiro L., Eiras-Dias J., Fevereiro P., 2010. The Portuguese Vitis Vinifera L. germplasm: genetic relations between wild and cultivated vines. Ciência e Téc. Vitiv. , 25 , 25–37. [Google Scholar]
  • da Mota R.V., de Souza C.R., Favero A. C., Pinheiro Carvalho e Silva C., Lopes do Carmo E., Fonseca A.R., de Albuquerque Regina M., 2009. Produtividade e composição físico-química de bagas de cultivares de uva em distintos porta-enxertos. Pesq. agropec. bras., Brasília , 44 , 576-582. [CrossRef] [Google Scholar]
  • Delrot S., Grimplet J., Carbonell-Bejerano P., Schwandner A., Bert P-F., Bavaresco L., Dalla Costa L., Di Gaspero G., Duchêne E., Hausmann L., Malnoy M., Morgante M., Ollat N., Pecile M. Vezzulli S., 2020. Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change. In: Genomic Designing of Climate-Smart Fruit Crops. 157-270. Kole C. (Ed.) Springer, Cham. [CrossRef] [Google Scholar]
  • Fernandes R., 2012. Descrição do terreno ao redor de Lamego duas léguas [1531-1532]. 1a ed (Edição crítica de Amândio Morais Barros). 126 p. Caleidoscópio - Ediçâo e Artes Gráficas, S.A. [Google Scholar]
  • Fong R.A., Kepner R.E., Webb A.D., 1971. Acetic-Acid-Acylated Anthocyanin Pigments in the Grape Skins of a Number of Varieties of Vitis vinifera . Am. J. Enol. Vitic., 22 , 150-155. [Google Scholar]
  • Galet P., 1998. Précis d’Ampélographie Pratique. 256 p. 7th edition. JF Impression (Ed.), Saint-Jean de Védas, France. [Google Scholar]
  • García de Cortázar-Atauri I., Duchêne E., Destrac-Irvine A., Barbeau G., de Rességuier L., Lacombe T., Parker A.K., Saurin N., van Leeuwen C., 2017. Grapevine phenology in France: from past observations to future evolutions in the context of climate change. OENO One , 51 , 115-126. [CrossRef] [Google Scholar]
  • Gu S., Read P.E., Gamet S., 2005. Performance of ‘Gewurztraminer’ on Six Rootstocks Under Marginal Climatic Conditions. Proc. Grapevine Rootstocks: Current Use, Research, and Application, Rootstock Symposium. Osage Beach, Missouri, 57-60. [Google Scholar]
  • Gullo G., Dattola A., Vonella V., Zappia R., 2018. Evaluation of water relation parameters in Vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar. J. Plant Physiol ., 226 , 172-178. [CrossRef] [PubMed] [Google Scholar]
  • Gutiérrez-Gamboa G., Gómez-Plaza E., Bautista-Ortín A.B., Garde-Cerdán T., Moreno-Simunovic Y., Martínez-Gil A.M., 2019. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. J Sci Food Agric ., 99 , 2846-2854. [CrossRef] [PubMed] [Google Scholar]
  • Hidalgo J., 2003. Tratado de Enología. Tomo I. 752 p. Mundi-Prensa (Ed.), Madrid, Spain. [Google Scholar]
  • Jogaiah S., Kitture A.R., Sharma A.K., Sharma J., Upadhyay A.K., Somkuwar R.G., 2015. Regulation of fruit and wine quality parameters of ‘Cabernet Sauvignon’ grapevines (Vitis vinifera L.) by rootstocks in semiarid regions of India. Vitis, 54 , 65-72. [Google Scholar]
  • Jogaiah S., Oulkar D.P., Banerjee K., Sharma J., Patil A.G., Maske S.R., Somkuwar R.G., 2013. Biochemically induced variations during some phenological stages in Thompson Seedless grapevines grafted on different rootstocks. S. Afr. J. Enol. Vitic., 34 , 36-45. [Google Scholar]
  • Jones G.V., White M.A., Cooper O.R., Storchmann K., 2005. Climate change and global wine quality. Clim. Change, 73 , 319-343. [Google Scholar]
  • Koblet W., Candolfi-Vasconcelos M.C., Zweifel W., Howell G.S., 1994. Influence of leaf removal, rootstock and training system on yield and fruit composition of Pinot noir grapevines. Am. J. Enol. Vitic , 45 (2), 181-187. [Google Scholar]
  • Li M., Guo Z., Jia N., Yuan J., Han B., Yin Y., Sun Y., Liu C., Zhao S., 2019. Evaluation of eight rootstocks on the growth and berry quality of ‘Marselan’ grapevines. Sci. Hort., 248 , 58-61. [Google Scholar]
  • Loureiro M.D., Moreno-Sanz P., García A., Fernández O., Fernández N., Suárez B., 2016. Influence of rootstock on the performance of the Albarín Negro minority grapevine cultivar. Sci. Hort. , 201 , 145-152. [CrossRef] [Google Scholar]
  • Loureiro M.D., Moreno-Sanz P., Suárez B., 2017. Selección clonal de cultivares de vid del Principado de Asturias. 83 pp. SERIDA (Ed.), Asturias, Spain. [Google Scholar]
  • Lourenço M. M., 2013. Influência das Condições Climáticas na Produção e Qualidade Vitivinícola da Sub-região de Castelo Rodrigo entre 1992 e 2012. 129 p. Dissertação de Mestrado em Geografia Física, Departamento de Geografia da Faculdade de Letras, Universidade de Coimbra. [Google Scholar]
  • Marín D., García R., Eraso J., Urrestarazu J., Miranda C., Royo J. B., Abad F. J., Santesteban L.G., 2019. Evaluation of the agronomic performance of ‘Syrah’ and ‘Tempranillo’ when grafted on 12 rootstocks. Vitis , 58 (Special Issue), 111–118. [Google Scholar]
  • Miele A., Rizzon L.A., 2017. Rootstock-scion interaction: 2. Effect on the composition of Cabernet Sauvignon grape must. Rev. Bras. Frutic ., v. 39, n.3: (e-434). Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/162797/1/2017-v39-n3-p1-9-e-434.pdf (accessed on 14.07.2019). [Google Scholar]
  • Moreno-Sanz P., Loureiro M.D., Suárez B., 2011. Microsatellite characterization of grapevine (Vitis vinifera L.) genetic diversity in Asturias (Northern Spain). Sci. Hortic ., 29 , 433-440. [CrossRef] [Google Scholar]
  • Naredo M., 1914. Elaboración y conservación de los vinos producidos en la provincia de Oviedo. Abonos minerales más convenientes al cultivo vitícola en las zonas de esta provincia. Proc. National Congress Viticulture 1912 . Navarra, Spain, 353-356. [Google Scholar]
  • Neal S.M., Friend A.P., Trought M.C.T., McLachlan A.R.G., 2016. The performance of ‘Sauvignon Blanc’ on five grapevine rootstocks in a Marlborough vineyard. Acta Hort. , 1115 , 147-155. [CrossRef] [Google Scholar]
  • Ollat N., Tandonnet J.P., Lafontaine M., Schultz H.R., 2003. Short and long term effects of three rootstocks on Cabernet Sauvignon vine behaviour and wine quality. Acta Hortic. , 617 , 95-99. [Google Scholar]
  • Picinelli A., Suárez B., Moreno J., Rodríguez R., Caso-García L.M., Mangas J.J. 2000. Chemical characterization of Asturian cider. J. Agric. Food Chem., 48 , 3997–4002. [CrossRef] [PubMed] [Google Scholar]
  • Ramos M. C., Jones G. V, Yuste J., 2018. Phenology of Tempranillo and Cabernet-Sauvignon varieties cultivated in the Ribera del Duero DO: observed variability and predictions under climate change scenarios. OENO One , 52 , 31-44. [CrossRef] [Google Scholar]
  • Renouf V., Tregoat O., Roby J.-P., van Leeuwen C., 2010. Soils, rootstocks and grapevine varieties in prestigious Bordeaux vineyards and their impact on yield and quality. J. Int. Sci. Vigne Vin, 44 , 127-134. [Google Scholar]
  • Reynier A., 2005. Manual de viticultura. 6th edition. 497 p. Mundi-Prensa (Ed.), Madrid, Spain. [Google Scholar]
  • Robinson J., Harding J., Vouillamoz J., 2012. Wine Grapes. A complete guide to 1,368 vine varieties, including their origins and flavours. 1248 p. Penguin (Ed.), UK. [Google Scholar]
  • Sabir A., Sahin Z., 2018. The Response of Soilless Grown ‘Michele Palieri’ (Vitis vinifera L.) Grapevine Cultivar to Deficit Irrigation Under the Effects of Different Rootstocks. Erwerbs-Obstbau , 60 , 21–27. [CrossRef] [Google Scholar]
  • Scalabrelli G., Ferroni G., D’Oofrio C., Di Collalto G., Venerini F., 2003. Trials with ‘Sangiovese’ grafted on several grapevine rootstocks in two different area of Tuscany. ActaHort ., 617 , 73–83. [CrossRef] [Google Scholar]
  • Shellie K., Cragin J., Serpe M., 2014. Performance of Alternative European Wine Grape Cultivars in Southwestern Idaho: Cold Hardiness, Berry Maturity, and Yield. HortTechnology , 24 , 138-147. [Google Scholar]
  • Sivilotti P., Zulini L., Petrussi C., Peterlunger E., 2007. Sensory properties of Cabernet Sauvignon wines as affected by rootstock and season. Acta Hortic , 754 , 443-448. [Google Scholar]
  • Smart R., Robinson M., 1991. Sunlight into wine. A handbook for winegrape canopy management. 88 p. Winetitles (Ed.), Adelaide, Australia. [Google Scholar]
  • Sousa M., Pereira C., Guerra J., Abade E., 2008. Caracterização de Castas Cultivadas na Região Vitivinícola de Trás-os-Montes Subregiões de Chaves, Planalto irandês e Valpaços. 48 p. Direcção Regional de Agricultura e Pescas do Norte (DRAPN) Núcleo de Documentação e Relações Públicas (NDRP) (Ed.), Mirandela, Portugal. [Google Scholar]
  • Spring J.L., Verdenal T., Zufferey V., Gindro K., Viret O., 2012. Influence du porte-greffe sur le comportement du cépage Cornalin dans le Valais central. Rev. Suisse Vitic. Arboric. Hortic ., 44 , 298-307. [Google Scholar]
  • Spring J.L., Zufferey V., Verdenal T., Viret O., 2016. Influence du porte-greffe sur le comportement du Pinot noir dans les conditions du Valais central. Rev. Suisse Vitic. Arboric. Hortic ., 48 , 112-122. [Google Scholar]
  • Suárez B., Pando R., Fernández N., González A., Rodríguez R., 2005. Analitical differentiation of cider inoculated with yeast (Saccharomyces cerevisiae) isolated from Asturian (Spain) apple juices. LWT-Food Sci. Technol. , 38 , 455–461. [CrossRef] [Google Scholar]
  • van Leeuwen C., Darriet P., 2016. The impact of climate change on viticulture and wine quality. J. Wine Econom. , 11 , 150-167. [CrossRef] [Google Scholar]
  • van Leeuwen C., Destrac-Irvine A., 2017. Modified grape composition under climate change conditions requires adaptation in the vineyard. OENO One , 51 , 147-154. [CrossRef] [Google Scholar]
  • Vilanova M., Campo E., Escudero A., Graña M., Masa A., Cacho J., 2012. Volatile composition and sensory properties of Vitis vinifera red cultivars from North West Spain: Correlation between sensory and instrumental analysis. Anal. Chem. Acta , 720 , 104-111. [CrossRef] [PubMed] [Google Scholar]
  • Whiting J.R., 2003. Selection of grapevine rootstocks and clones for Greater Victoria. State of Victoria, Department of Primary Industries, Melbourne, Australia. Available at: http://www.hin.com.au/__data/assets/pdf_file/0005/9149/Selectionof-rootstocks-and-clones-Whiting-2003.pdf (accessed on 20.09.2019). [Google Scholar]
  • Wooldridge J., Olivier M.P., 2014. Effects of weathered soil parent materials on Merlot grapevines grafted onto 110 Richter and 101-14 Mgt rootstocks. S. Afr. J. Enol. Vitic. , 35 , 59-67. [Google Scholar]
  • Xiao Z., DeGaris K. A., Baby T., McLoughlin S. J., Holzapfel B. P., Walker R. R., Schmidtke L. M., Rogiers S. Y., 2020. Using rootstocks to lower berry potassium concentrations in ‘Cabernet Sauvignon’ grapevines. Vitis , 59 , 117–126. [Google Scholar]
  • Yuste J., Vicente A., Barajas E., Albuquerque M., 2017. Diez portainjertos de vid: Efectos sobre el crecimiento, la producción y la composición de la uva del cv. Sauvignon blanc en la denominación de origen Rueda (España). BIO Web of Conferences 9, 01009. Proc. 40th World Congress of Vine and Wine, Sofía, Bulgary. Available at: https://www.bioconferences.org/articles/bioconf/pdf/2017/02/bioconfoiv2017_01009.pdf (accessed on 22.07.2019). [CrossRef] [EDP Sciences] [Google Scholar]
  • Zhang L., Marguerit E., Rossdeutsch L., Ollat N., Gambetta A.G., 2016. The influence of grapevine rootstocks on scion growth and drought resistance. Theor. Exp. Plant. Physiol. , 28 , 143-157. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.