Open Access
Issue
Ciência Téc. Vitiv.
Volume 35, Number 2, 2020
Page(s) 133 - 147
DOI https://doi.org/10.1051/ctv/20203502133
Published online 22 October 2020
  • Anastasiadi M., Zira A., Magiatis P., Haroutounian S., Skaltsounis A., Mikros E., 2009. 1H NMR-based metabolomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data. J. Agric. Food Chem., 57, 11067–11074. [CrossRef] [PubMed] [Google Scholar]
  • Aru V., Sørensen K., Khakimov B., Toldam-Andersen T., Balling Engelsen S., 2018. Cool-climate red wines - chemical composition and comparison of two protocols for 1H-NMR analysis. Molecules, 23, 160. [CrossRef] [Google Scholar]
  • Asimov E., 2009. Brunello inquiry cites five wineries. 12 August. The New York Times D, Dining In, Dining Out. [Google Scholar]
  • Bautista-Ortín A., Busse-Valverde N., Fernández-Fernández J., Gómez-Plaza E., Gil-Muñoz R., 2016. The extraction kinetics of anthocyanins and proanthocyanidins from grape to wine in three different varieties. OENO One, 50, 91-100. [Google Scholar]
  • Bavaresco L., Pezzutto S., Gatti M., Mattivi F., 2007. Role of the variety and some environmental factors on grape stilbenes. Vitis, 46, 57–61. [Google Scholar]
  • Bender M., 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry, 10, 1239–1244. [CrossRef] [Google Scholar]
  • Bora, D. Donici A., Teodor R., Bunea A., Popescu D., Bunea C., 2018. Elemental profile and 207Pb/206Pb, 208Pb/206Pb, 204Pb/206Pb, 87Sr/86Sr isotope ratio as fingerprints for geographical traceability of Romanian wines. Not. Bot. Hort. Agrobot. Cluj, 46, 223–239. [CrossRef] [Google Scholar]
  • Bosso A., Guaita M., Panero L., Borsa D., Follis R., 2009. Influence of two winemaking techniques on polyphenolic composition and color of wines. Am. J. Enol. Vitic., 60, 379–385. [Google Scholar]
  • Bréas O., Reniero F., Serrini G., Martin G., Rossmann A., 1994. Isotope ratio mass spectrometry: analysis of wines from different European countries. Rapid Commun. Mass Spectrom., 8, 967–970. [CrossRef] [Google Scholar]
  • Brescia M., Košir I., Caldarola V., Kidrič J., Sacco A., 2003. Chemometric classification of Apulian and Slovenian wines using 1H NMR and ICP-OES together with HPICE data. J. Agric. Food Chem., 51, 21–26. [CrossRef] [PubMed] [Google Scholar]
  • Canals R., Llaudy M., Valls J., Canals J., Zamora F., 2005. Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening. J. Agric. Food Chem., 53, 4019–4025. [CrossRef] [PubMed] [Google Scholar]
  • Cassino C., Tsolakis C., Bonello F., Gianotti V., Osella D., 2019. Wine evolution during bottle aging, studied by 1H NMR spectroscopy and multivariate statistical analysis. Food Sci. Technol. Int., 116, 566–577. [Google Scholar]
  • Castellarin S., Pfeiffer A., Sivilotti P., Degan M., Peterlunger E., Di Gaspero G., 2007. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ., 30, 1381–1399. [CrossRef] [PubMed] [Google Scholar]
  • Catarino S., Curvelo-Garcia A., Sousa R., 2008a. Revisão: Elementos contaminantes nos vinhos. Ciência Tec. Vitiv., 23, 3–19. [Google Scholar]
  • Catarino S., Madeira M., Monteiro F., Caldeira I., Bruno de Sousa R., Curvelo-Garcia A., 2018. Mineral composition through soilwine system of Portuguese vineyards and its potential for wine traceability. Beverages, 4, 85. [CrossRef] [Google Scholar]
  • Catarino S., Madeira M., Monteiro F., Rocha F., Curvelo-Garcia A., De Sousa R., 2008b. Effect of bentonite characteristics on the elemental composition of wine. J. Agric. Food Chem., 56, 158–165. [CrossRef] [Google Scholar]
  • Catarino S., Trancoso I., Madeira M., Monteiro F., Bruno de Sousa R., Curvelo-Garcia A., 2011. Rare earths data for geographical origin assignment of wine: a Portuguese case study. Bulletin de l’OIV, 84, 333–346. [Google Scholar]
  • Cheng J., Liang C., 2012. The variation of mineral profiles from grape juice to monovarietal Cabernet sauvignon wine in the vinification process. J. Food Process. Preserv., 36, 262–266. [CrossRef] [Google Scholar]
  • Christoph N., Hermann A., Wachter H., 2015. 25 years authentication of wine with stable isotope analysis in the European Union–review and outlook. BIO Web of Conferences, 5, 02020. [CrossRef] [EDP Sciences] [Google Scholar]
  • Coetzee P., Vanhaecke F., 2005. Classifying wine according to geographical origin via quadrupole based ICP–mass spectrometry measurements of boron isotope ratios. Anal. Bioanal. Chem., 383, 977–984. [CrossRef] [PubMed] [Google Scholar]
  • Craig H., 1961. Isotopic variations in meteoric waters. Science, 133, 1702–1703. [CrossRef] [PubMed] [Google Scholar]
  • Danezis G., Tsagkaris A., Brusic V., Georgiou C., 2016. Food authentication: state of the art and prospects. Curr. Opin. Food Sci., 10, 22–31. [CrossRef] [Google Scholar]
  • Diamond J., 2005. Collapse: How societies choose to fail or fucceed. 173 p. Penguin Books, London, UK. [Google Scholar]
  • Dinca O.-R., Ursu S., Costinel D., Popescu R., Miricioiu M., Radu G.-L., Popa D., Campeanu C., Elena R., 2015. Samburesti wines characterization in terms of their stable isotope content. U.P.B. Sci. Bull., 77, 176-187. [Google Scholar]
  • Dongmann G., Nürnberg H., Förstel H., Wagener K., 1974. On the enrichment of H2 18O in the leaves of transpiring plants. Rad. And Environm. Biophys., 11, 41–52. [CrossRef] [Google Scholar]
  • Dunbar J., 1982. A study of the factors affecting the 18O/16O ratio of the water of wine. Z. Lebensm. Unters. Forsch., 174, 355–359. [CrossRef] [Google Scholar]
  • English N., Betancourt J., Dean J., Quade J., 2001. Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico. Proc. Natl. Acad. Sci. USA, 98, 11891–11896. [CrossRef] [Google Scholar]
  • Esteki M., Shahsavari Z., Simal-Gandara J., 2018. Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control, 91, 100–112. [CrossRef] [Google Scholar]
  • Everstine K., Spink J., Kennedy S., 2013. Economically motivated adulteration (EMA) of food: common characteristics of EMA incidents. J. Food Prot., 76, 723–735. [CrossRef] [PubMed] [Google Scholar]
  • Fan S., Zhong Q., Fauhl-Hassek C., Pfister M.-H., Horn B., Huang Z., 2018. Classification of Chinese wine varieties using 1H NMR spectroscopy combined with multivariate statistical analysis. Food Control, 88, 113–122. [CrossRef] [Google Scholar]
  • Farquhar G., O’Leary M., Berry J., 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol., 9, 121–137. [CrossRef] [Google Scholar]
  • Farrar T., Becker E., 1971. Basic concepts in NMR. In: Pulse and Fourier transform NMR: Introduction to theory and methods, 1-8. Academic Press, New York, NY, USA. [Google Scholar]
  • Faure G., Powell J., 1972. The Geochemistry of Rubidium and Strontium. In: Minerals, Rocks and Inorganic Materials. Strontium isotope geology, 1-8. Springer-Verlag. Heidelberg, DE. [Google Scholar]
  • Ferrandino A., Carra A., Rolle L., Schneider A., Schubert A., 2012. Profiling of hydroxycinnamoyl tartrates and acylated anthocyanins in the skin of 34 Vitis vinifera genotypes. J. Agric. Food Chem., 60, 4931–4945. [CrossRef] [PubMed] [Google Scholar]
  • Ferreira R., Monteiro S., Piçarra-Pereira M., Tanganho M., Loureiro V., Teixeira A., 2000. Characterization of the proteins from grapes and wines by immunological methods. Am. J. Enol. Vitic., 51, 22–28. [Google Scholar]
  • Ferreira R., Piçarra-Pereira M., Monteiro S., Loureiro V., Teixeira A., 2001. The wine proteins. Trends Food Sci. Technol., 12, 230–239. [CrossRef] [Google Scholar]
  • Formisyn P., Vaillant H., Lantreibecq F., Bourgois J., 1997. Development of an enzymatic reactor for initiating malolactic fermentation in wine. Am. J. Enol. Vitic., 48, 345–351. [Google Scholar]
  • Geană E.-I., Sandru C., Stanciu V., Ionete R., 2017. Elemental profile and 87Sr/86Sr isotope ratio as fingerprints for geographical traceability of wines: an approach on Romanian wines. Food Anal. Methods, 10, 63–73. [CrossRef] [Google Scholar]
  • Gill R., Mayewski P., Nyberg J., Haug G., Peterson L., 2007. Drought and the Maya collapse. Anc. Mesoam., 18, 283–302. [CrossRef] [Google Scholar]
  • Godelmann R., Fang F., Humpfer E., Schütz B., Bansbach M., Schäfer H., Spraul M., 2013. Targeted and nontargeted wine analysis by 1H NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: grape variety, geographical origin, year of vintage. J. Agric. Food Chem., 61, 5610–5619. [CrossRef] [PubMed] [Google Scholar]
  • Godelmann R., Kost C., Patz C.-D., Ristow R., Wachter H., 2016. Quantitation of compounds in wine using 1H NMR spectroscopy: description of the method and collaborative study. J. AOAC Int., 99, 1295–1304. [CrossRef] [PubMed] [Google Scholar]
  • Haynes M., Lide R., Brun J., 2017. Atomic masses and abundances. In: CRC Handbook of Chemistry and Physics, 12-15(1). CRC Press, Boca Raton, FL, USA. [Google Scholar]
  • Holmberg L., 2010. Wine fraud. Int. J. Wine Res., 2, 105–113. [CrossRef] [Google Scholar]
  • OIV, 2019a. Compendium of international methods of wine and must analysis. Vol. 1. International Organisation of Vine and Wine: Paris, France. [Google Scholar]
  • OIV, 2019b. Compendium of international methods of wine and must analysis. Vol. 2. International Organisation of Vine and Wine: Paris, France. [Google Scholar]
  • Jin Z.-M., He J.-J., Bi H.-Q., Cui X.-Y., Duan C.-Q., 2009. Phenolic compound profiles in berry skins from nine red wine grape cultivars in northwest China. Molecules, 14, 4922–4935. [CrossRef] [PubMed] [Google Scholar]
  • Kaya A., Bruno de Sousa R., Curvelo-Garcia A., Ricardo-da-Silva J., Catarino S., 2017. Effect of wood aging on wine mineral composition and 87Sr/86Sr isotopic ratio. J. Agric. Food Chem., 65, 4766–4776. [CrossRef] [PubMed] [Google Scholar]
  • Keeler J., 2002. NMR and energy levels. In: Understanding NMR spectroscopy, 1-19(2). John Wiley & Sons, Hoboken, NJ, USA. [Google Scholar]
  • Košir I., Kidrič J., 2002. Use of modern nuclear magnetic resonance spectroscopy in wine analysis: determination of minor compounds. Anal. Chim. Acta, 458, 77–84. [CrossRef] [Google Scholar]
  • Lerno L., Reichwage M., Ponangi R., Hearne L., Block D., Oberholster A., 2015. Effect of cap and overall fermentation temperature on phenolic extraction in Cabernet sauvignon fermentations. Am. J. Enol. Vitic., 66, 444–453. [CrossRef] [Google Scholar]
  • Loira I., Morata A., Palomero F., González C., Suárez-Lepe J., 2018. Schizosaccharomyces pombe: A promising biotechnology for modulating wine composition. Fermentation, 4, 70. [CrossRef] [Google Scholar]
  • Maicas S., 2001. The use of alternative technologies to develop malolactic fermentation in wine. Appl. Microbiol. Biotechnol., 56, 35–39. [CrossRef] [PubMed] [Google Scholar]
  • Marguerit E., Brendel O., Lebon E., Van Leeuwen C., Ollat N., 2012. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol., 194, 416–429. [CrossRef] [PubMed] [Google Scholar]
  • Martin G., Danho D., Vallet C., 1991. Natural isotope fractionation in the discrimination of sugar origins. J. Sci. Food Agric, 56, 419–434. [CrossRef] [Google Scholar]
  • Martin G., Martin M., Mabon F., Michon M., 1982. Identification of the origin of natural alcohols by natural abundance hydrogen-2 nuclear magnetic resonance. Anal. Chem., 54, 2380–2382. [CrossRef] [Google Scholar]
  • Martin G., Martin M., Mabon F., Michon M., 1983. A new method for the identification of the origin of ethanols in grain and fruit spirits: high-field quantitative deuterium nuclear magnetic resonance at the natural abundance level. J. Agric. Food Chem., 31, 311–315. [CrossRef] [Google Scholar]
  • Martins P., Madeira M., Monteiro F., De Sousa R., Curvelo-Garcia A., Catarino S., 2014. 87Sr/86Sr ratio in vineyard soils from Portuguese denominations of origin and its potential for origin authentication. J. Int. Sci. Vigne Vin., 48, 21–29. [Google Scholar]
  • Mazzei P., Francesca N., Moschetti G., Piccolo A., 2010. NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglianico grapes. Anal. Chim. Acta, 673, 167–172. [CrossRef] [PubMed] [Google Scholar]
  • Mazzei P., Spaccini R., Francesca N., Moschetti G., Piccolo A., 2013. Metabolomic by 1H NMR spectroscopy differentiates “Fiano di Avellino” white wines obtained with different yeast strains. J. Agric. Food Chem., 61, 10816–10822. [CrossRef] [PubMed] [Google Scholar]
  • Medina B., Augagneur S., Barbaste M., Grousset F., Buat-Ménard P., 2010. Influence of atmospheric pollution on the lead content of wines. Food Addit. Contam., 17, 435–445. [CrossRef] [Google Scholar]
  • Medina S., Perestrelo R., Silva P., Pereira J., Câmara J., 2019. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol., 85, 163-176. [CrossRef] [Google Scholar]
  • Meija J., Coplen T., Berglund M., Brand W., De Bièvre P., Gröning M., Holden N., Irrgeher J., Loss R., Walczyk T., Prohaska T., 2016. Isotopic compositions of the elements 2013 (IUPAC technical Report). Pure Appl. Chem., 88, 293–306. [CrossRef] [Google Scholar]
  • Meloni G., Swinnen J., 2013. The political economy of European wine regulations. J. Wine Econ., 8, 244–284. [CrossRef] [Google Scholar]
  • Monakhova Y., Godelmann R., Hermann A., Kuballa T., Cannet C., Schäfer H., Spraul M., Rutledge D., 2014. Synergistic effect of the simultaneous chemometric analysis of 1H NMR spectroscopic and stable isotope (SNIF-NMR, 18O, 13C) data: application to wine analysis. Anal. Chim. Acta, 833, 29–39. [CrossRef] [PubMed] [Google Scholar]
  • Moreira C., de Pinho M., Curvelo-Garcia A., de Sousa B., Ricardoda-Silva J., Catarino S., 2017. Evaluating nanofiltration effect on wine 87Sr/86Sr isotopic ratio and the robustness of this geographical fingerprint. S. Afr. J. Enol. Vitic., 38, 82–93. [Google Scholar]
  • Næs T., Mevik B.-H., 2001. Understanding the collinearity problem in regression and discriminant analysis. J. Chemometr., 15, 413–426. [CrossRef] [Google Scholar]
  • O’Leary M.H., 1978. Heavy atom isotope effects in enzymecatalyzed reactions. In: Transition states of biochemical processes, 285–316. Plenum, New York, NY, USA. [CrossRef] [Google Scholar]
  • Ogrinc N., Košir I., Kocjančič M., Kidrič J., 2001. Determination of authenticy, regional origin, and vintage of Slovenian wines using a combination of IRMS and SNIF-NMR analyses. J. Agric. Food Chem., 49, 1432–1440. [CrossRef] [PubMed] [Google Scholar]
  • Paris W., 2002. Top French wine diluted and sold with fake labels. The Observer, 24 February. [Google Scholar]
  • Pereira G., Gaudillere J.-P., Pieri P., Hilbert G., Maucourt M., Deborde C., Moing A., Rolin D., 2006. Microclimate influence on mineral and metabolic profiles of grape berries. J. Agric. Food Chem., 54, 6765–6775. [CrossRef] [PubMed] [Google Scholar]
  • Petrini R., Sansone L., Slejko F., Buccianti A., Marcuzzo P., Tomasi D., 2015. The 87Sr/86Sr strontium isotopic systematics applied to Glera vineyards: a tracer for the geographical origin of the Prosecco. Food Chem., 170, 138–144. [CrossRef] [PubMed] [Google Scholar]
  • Pocock K., Hayasaka Y., McCarthy M., Waters E., 2000. Thaumatin-like proteins and chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J. Agric. Food Chem., 48, 1637–1643. [CrossRef] [PubMed] [Google Scholar]
  • Redan B., Jablonski J., Halverson C., Jaganathan J., Mabud M., Jackson L., 2019. Factors affecting transfer of the heavy metals arsenic, lead, and cadmium from diatomaceous-earth filter aids to alcoholic beverages during laboratory-scale filtration. J. Agric. Food Chem., 67, 2670–2678. [CrossRef] [PubMed] [Google Scholar]
  • Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2006a. Phenolic compounds. In: Handbook of Enology, Volume 2: The Chemistry of Wine-Stabilization and Treatments, 141–203. John Wiley & Sons, West Sussex, UK. [CrossRef] [Google Scholar]
  • Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2006b. Organic acids in wine. In: Handbook of Enology, Volume 2: The Chemistry of Wine-Stabilization and Treatments, 3–49. John Wiley & Sons, West Sussex, UK. [Google Scholar]
  • Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2006c. Nitrogen compounds. In: Handbook of Enology, Volume 2: The Chemistry of Wine-Stabilization and Treatments, 109–139. John Wiley & Sons, West Sussex, UK. [CrossRef] [Google Scholar]
  • Rodionova O., Titova A., Pomerantsev A., 2016. Discriminant analysis is an inappropriate method of authentication. Trends Anal. Chem., 78, 17–22. [CrossRef] [Google Scholar]
  • Romano P., Suzzi G., Turbanti L., Polsinelli M., 1994. Acetaldehyde production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiol. Lett., 118, 213–218. [CrossRef] [PubMed] [Google Scholar]
  • Rossano E., Szilágyi Z., Malorni A., Pocsfalvi G., 2007. Influence of winemaking practices on the concentration of rare earth elements in white wines studied by inductively coupled plasma mass spectrometry. J. Agric. Food Chem., 55, 311–317. [CrossRef] [PubMed] [Google Scholar]
  • Sacchi K., Bisson L., Adams D., 2005. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vitic., 56, 197–206. [Google Scholar]
  • Schmidt H.-L., 2003. Fundamentals and systematics of the nonstatistical distributions of isotopes in natural compounds. Sci. Nat., 90, 537–552. [CrossRef] [PubMed] [Google Scholar]
  • Sebastião P., Gradisek A., Pinto L., Apih T., Godinho M., Vilfan M., 2011. Fast field-cycling NMR relaxometry study of chiral and nonchiral nematic liquid crystals. J. Phys. Chem. B, 115, 14348–14358. [CrossRef] [PubMed] [Google Scholar]
  • Shriver D., Weller M., Overton T., Rourke J., Armstrong F., 2014. Atomic structure. In: Inorganic Chemistry, 3–33. WH Freeman and Company, New York, NY, USA. [Google Scholar]
  • Smith P., McRae J., Bindon K., 2015. Impact of winemaking practices on the concentration and composition of tannins in red wine. Aust. J. Grape Wine Res., 21, 601–614. [CrossRef] [Google Scholar]
  • Son H.-S., Kim K., Van Den Berg F., Hwang G.-S., Park W.-M., Lee C.-H., Hong Y.-S., 2008. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. J. Agric. Food Chem., 56, 8007–8016. [CrossRef] [PubMed] [Google Scholar]
  • Sousa M., Teixeira J., Mota M., 1991. Malo-alcoholic fermentation: the influence of operating conditions on the kinetics of deacidification. J. Wine Res., 2, 115–124. [CrossRef] [Google Scholar]
  • Šuklje K., Lisjak K., Baša Česnik H., Janeš L., Du Toit W., Coetzee Z., Vanzo A., Deloire A., 2012. Classification of grape berries according to diameter and total soluble solids to study the effect of light and temperature on methoxypyrazine, glutathione, and hydroxycinnamate evolution during ripening of Sauvignon blanc (Vitis vinifera L.). J. Agric. Food Chem., 60, 9454–9461. [CrossRef] [PubMed] [Google Scholar]
  • Tcherkez G., Mahé A., Hodges M., 2011. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci., 16, 499–506. [PubMed] [Google Scholar]
  • Tramontini S., Vitali M., Centioni L., Schubert A., Lovisolo C., 2013. Rootstock control of scion response to water stress in grapevine. Environ. Exp. Bot., 93, 20–26. [CrossRef] [Google Scholar]
  • Tyagi S., Raghvendra S., Kalra T., Munjal K., 2010. Applications of metabolomics-a systematic study of the unique chemical fingerprints: an overview. Int. J. Pharm. Sci. Rev. Res., 3(1), 83–86. [Google Scholar]
  • U.S. Food and Drug Administration, 2010. Adulterated food. U.S. Food and Drug Administration, Washington, DC, IV. 21, 342–402. [Google Scholar]
  • Vorster C., Greeff L., Coetzee P., 2010. The determination of 11B/10B and 87Sr/86Sr isotope ratios by quadrupole-based ICP-MS for the fingerprinting of South African wine. S. Afr. J. Chem., 63, 207–214. [Google Scholar]
  • Waters E., Alexander G., Muhlack R., Pocock K., Colby C., O’Neill B., Høj P., Jones P., 2005. Preventing protein haze in bottled white wine. Aust. J. Grape Wine Res., 11, 215–225. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.