Open Access
Issue
Ciência Téc. Vitiv.
Volume 34, Number 2, 2019
Page(s) 91 - 101
DOI https://doi.org/10.1051/ctv/20193402091
Published online 08 November 2019
  • ABNT NBR ISO 13299. 2017. Sensory analysis — Methodology — General guidance for establishing a sensory profile. 50 p.1 [Google Scholar]
  • Associação Brasileira de Normas Técnicas, Brasília. AEB-Group, 2013. pH STAB: Ion exchange resin. Technical information. Available at: http://www.acenologia.com/aeb/pdf/ph_stab.pdf (accessed on 20.07.2019). [Google Scholar]
  • AOAC, 1995. Official methods of analysis. 16.ed., 1094 p. AOAC, Washington. [Google Scholar]
  • Bailetti L.I., Santini C., Supino S., 2019. Sensory sciences and competitiveness in the wine business. In: Case Studies in the Wine Industry. 75–85. Woodhead Publishing, Duxford, UK. [CrossRef] [Google Scholar]
  • Benitez P., Castro R., Barroso C.G., 2002. Removal of iron, copper and manganese from white wines through ion exchange techniques: effects on their organoleptic characteristics and susceptibility to browning. Anal. Chim. Acta., 458, 197–202. [Google Scholar]
  • Blouin J., Peynaud E., 2006. Enología Práctica: Conocimiento y elaboración del vino, 4 ed., 360 p. Mundi-Prensa, Madrid. [Google Scholar]
  • Bruijn J., Valdebenito A., Loyola C., Serra I., Salazar F., López F., 2009. Continuous stabilization of chardonnay with ion-exchange resin: influence on protein and phenolic profiles of wine. Chilean J.A.R., 69, 54–59. [Google Scholar]
  • Cabrita M.J., Clemente A., di Mari A., Couto M., Catarino S., 2014. A utilização de resinas de troca iônica em vinhos. Winetech plus, 3, 47–49. [Google Scholar]
  • Dutcosky S.D., 2007. Análise sensorial de alimentos. 2ª ed. 540 p. Champagnat, Curitiba. [Google Scholar]
  • Edwards T., Singleton V., Boulton R., 1985. Formation of ethyl acids of tartaric acid during wine aging: Chemical and sensory effects. Am. J. Enol. Vitic., 36, 118–124. [Google Scholar]
  • Ferreira V., López R., Cacho J., 2000. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food. Agric., 80, 1659‐1667. [Google Scholar]
  • Gómez-Benítez J., Palacios Macías V.M., Pérez Rodríguez L., 2002. Estimación de los costes directos de la estabilización tartárica mediante tratamiento por frío, intercambio protónico y electrodiálisis. Tecn. del vino, July/August, 45–49. [Google Scholar]
  • Ibeas V., Correia A.C., Jordão A.M., 2015. Wine tartrate stabilization by different levels of cation exchange resin treatments: impact on chemical composition, phenolic profile and organoleptic properties of red wines. Food Res. Inter., 69, 364–372. [CrossRef] [Google Scholar]
  • Lambrechts M.G., Pretorius I.S., 2000. Yeast its Importance to Wine Aroma: Review. S. Afr. J. Enol. Vitic., 21, 97–129. [Google Scholar]
  • Lasanta C. Caro I., Pérez L., 2013. The influence of cation exchange treatment on the final characteristics of red wines. Food Chem., 138, 1072–1078. [CrossRef] [Google Scholar]
  • Li H., Anque G., Wang H., 2008. Mechanisms of oxidative browning of wine. Food Chem., 108, 1–13. [CrossRef] [Google Scholar]
  • Liu X., Jia B., Sun X., Ai J., Wang L., Wang C., Zhao F., Zhan J., Huang W., 2015. Effect of initial PH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. J. Food Sci., 80, 800–808. [CrossRef] [Google Scholar]
  • Marais J., 1978. The effect of pH on esters and quality of Colombar wine during maturation. Vitis-Berichte Reben. Dokum. Weinb., 17, 396–403. [Google Scholar]
  • MAPA, 2013. Manual e métodos de análises de bebidas e vinagres. 2 p. MET BEB/003/001. Brasil. [Google Scholar]
  • Mira H., Leite P., Da Silva J.M.R., García A.S.C., 2004. Resinas permutadoras de iones para estabilização tartárica de vinhos. Enologia, 44, 15–24. [Google Scholar]
  • Mira H., Leite P., Da Silva J.M.R., Curvelo García A.S., 2006. Use of ion exchange resins for tartrate wine stabilization. J. Int. Sci. Vigne Vin, 40, 223–246. [Google Scholar]
  • Moreno J., Peinado R., 2012. Enological chemistry. 430 p. Academic Press, San Diego. [Google Scholar]
  • Murray J.M., Delahunty C.M., Baxter I.A., 2001. Descriptive sensory analysis: past, present and future. Food Res. Inter., 34, 461–471. [CrossRef] [Google Scholar]
  • OIV, 2018. Compendium of International Methods of Wine and Must Analysis, Vol. 2, 837 p. OIV, Paris. [Google Scholar]
  • Oliveira C.M., Ferreira A.C.S., De Freitas V., Silva A.M.S., 2011. Oxidation mechanisms occurring in wines. Food Res. Int., 44, 1115–1126. [CrossRef] [Google Scholar]
  • Palacios V.M., Caro I., Pérez L., 2001. Application of ion exchange techniques to industrial process of metal ions removal from wine. Adso., 7, 131–138. [CrossRef] [Google Scholar]
  • Patrianakou M., Roussis I.G., 2013. Decrease of wine volatile aroma esters by oxidation. S. Afr. J. Enol. Vitic., 34, 241–245. [Google Scholar]
  • Plane R.A., Mattick L.R., Weirs L.D., 1980. An acidity index for the taste of wine. Am. J. Enol. Vitic., 31, 265–268. [Google Scholar]
  • Ponce F., Mirabal-Gallardo Y., Versari A., Felipe Laurie V., 2018. The use of cation exchange resins in wines: Effects on pH, tartrate stability, and metal content. Cien. Inv. Agr., 45, 82–92. [CrossRef] [Google Scholar]
  • Portaria nº 76/1986, de 26 de novembro de 1986. Dispõe sobre os métodos analíticos de bebidas e vinagre: acidez total ou titulável, método 05. Diário Oficial da União, Brasília. [Google Scholar]
  • Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2007. Trattato di enologia II: Chimica del vino Stabilizzazione Trattamenti 3 ed. 502 p. Edagricole Italia, Bologna. [Google Scholar]
  • Rockenbach I.I., Silva G.L.D., Rodrigues E., Kuskoski E.M., Fett R., 2008. Solvent influence on total polyphenol content, anthocyanins, and antioxidant activity of grape (Vitis vinifera) bagasse extracts from Tannat and Ancelota-different varieties of Vitis vinifera varieties. Food Sci. and Tech., 28, 238–244. [CrossRef] [Google Scholar]
  • Saerens S., Delvaux F., Verstrepen K., Van Dijck P., Thevelein J., Delvaux F., 2008. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appli. Envi. Micro., 74, 454–461. [CrossRef] [Google Scholar]
  • Stehlik-Tomas V., Grba S., Stanzer D., Vahcic N., Gulan Zetic V., 2003. Uptake of iron by yeast cells and its impact on biomass production. Acta Alim., 32, 279–287. [CrossRef] [Google Scholar]
  • Tamasi G., Pardini A., Bonechi C., Donati A., Casolaro M., Leone G., Consumi M., Cini R., Magnani A., Rossi C., 2018. Ionic exchange resins and hydrogels for capturing metal ions in selected sweet dessert wines. Molecules., 23, 2973. [CrossRef] [Google Scholar]
  • Togores J.H., 2018. Tratado de Enología 3ªed. 1936 p. Mundi-Prensa, Madrid. [Google Scholar]
  • Walker G.M., 2004. Metals in yeast fermentation processes. Adv. Appl. Microb., 54, 197–230. [CrossRef] [Google Scholar]
  • Walker T., Morris J., Threlfall R., Main G., 2002. pH modification of Cynthiana wine using cationic exchange. J. Agric. Food Chem., 50, 6346–6352. [CrossRef] [PubMed] [Google Scholar]
  • Webber V., Dutra V. S., Spinelli F.R., Marcon A.R., Carnieli G.J., Vanderlinde R., 2014. Effect of glutathione addition in splarkling wine. Food Chem., 159, 391–398. [CrossRef] [PubMed] [Google Scholar]
  • Zoecklin B.W., Fugelsang K.C., Gump B.H., Nury F.S., 1995. Laboratory procedures. In: Wine analysis and production. 493–497. Chapman & Hall, New York. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.