Open Access
Issue
Ciência Téc. Vitiv.
Volume 34, Number 2, 2019
Page(s) 102 - 114
DOI https://doi.org/10.1051/ctv/201934010102
Published online 27 November 2019
  • Advid, 2014. Ecovitis. Available at: https://www.youtube.com/watch?v=bP3AJFwZtc (accessed on 01.08.2019). [Google Scholar]
  • Agrofood3.0, 2014a. Ecovitis. Noticia Flash. Available at: https://www.youtube.com/watch?v=5pV0KIeCyBA (accessed on 01.08.2019). [Google Scholar]
  • Agrofood3.0, 2014b. Confusão sexual/ Notícia Flash. Available at: https://www.youtube.com/watch?v=uHgIGx-gpW0&t=18s (accessed on 01.08.2019). [Google Scholar]
  • Agrofood3.0, 2015. Notícia Flash / Exposição Ecovitis / UTAD. Available at: https://www.youtube.com/watch?v=6DEyoQRD7NI (accessed on 01.08.2019). [Google Scholar]
  • Andresen T., De Aguiar F.B., Curado M.J., 2004. The Alto Douro Wine Region greenway. Landsc. Urban Plan., 68, 289–303. [Google Scholar]
  • Andresen T., Rebelo J., 2013. Assessment of the State of Conservation of the Property Alto Douro Wine Region – Evolutive and Living Cultural Landscape – Assessment Report. Porto: CCDRN/EMD, CIBIO UP-UTAD. [Google Scholar]
  • Bender S.F., Wagg C., van der Heijden M.G.A., 2016. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol., 31, 440–452. [CrossRef] [PubMed] [Google Scholar]
  • Bertran E., Sort X., Soliva M., Trillas I., 2004. Composting winery waste: sludges and grape stalks. Bioresour. Technol., 95, 203–208. [Google Scholar]
  • Bohac J., 1999. Staphylinid beetles as bioindicators. Agric. Ecosyst. Environ., 74, 357–372. [Google Scholar]
  • Böller E.F., Häni F., Hans-Michael P. (Eds), 2004. Ecological infrastructures: Ideabook on functional biodiversity at the farm level. Temperate zones of Europe. 212 p. Swiss Centre for Agricultural Extension and Rural Development, Switzerland. [Google Scholar]
  • Bruggisser O.T., Schmidt-Entling M.H., Bacher S., 2010. Effects of vineyard management on biodiversity at three trophic levels. Biol. Conserv., 143, 1521–1528. [Google Scholar]
  • Cardinale B.J., Duffy J.E., Gonzalez A., Hooper D.U., Perrings C., Venail P., Narwani A., Mace G.M., Tilman D., Wardle D.A., Kinzig A.P., Daily G.C., Loreau M., Grace J.B., Larigauderie A., Srivastava D.S., Naeem S., 2012. Biodiversity loss and its impact on humanity. Nature, 486 , 59–67. [CrossRef] [PubMed] [Google Scholar]
  • Cardoso P., Pekár S., Jocqué R., Coddington J.A., 2011. Global patterns of guild composition and functional diversity of spiders. PLoS ONE, 6, e21710. [CrossRef] [PubMed] [Google Scholar]
  • Carlos C.C.R., 2017. Towards a sustainable control of arthropod pests in Douro Demarcated Region vineyards with emphasis on the grape berry moth, Lobesia botrana (Denis & Schifermüller). 164 p, PhD Thesis. Universidade de Trás-os-Montes e Alto Douro. [Google Scholar]
  • Carlos C., Gonçalves F., Sousa S., Crespi A., Torres L., 2013b. Infra-estruturas ecológicas. Guia de instalação de comunidades vegetais. 6pp. Vila Real. [Google Scholar]
  • Carlos C., Gonçalves F., Sousa S., Salvação J., Sharma L., Soares R., Manso J., Nóbrega M., Lopes A., Soares S., Aranha J., Villemant C., Marques G., Torres L., 2013c. Environmentally safe strategies to control the European Grapevine Moth, Lobesia botrana (Den. & Schiff.) in the Douro Demarcated Region. Cienc. Tec. Vitivinic., 28 (II), 1006–1011. [Google Scholar]
  • Carlos C., Gonçalves F., Crespo L., Zina V., Oliveira I., Crespí A., Torres L., 2019. How does habitat diversity affect ground-dwelling arthropods assemblages in Douro Demarcated Region terraced vineyards? J. Insect Conserv., 23, 555–564 [CrossRef] [Google Scholar]
  • Carlos C., Gonçalves F., Sousa S., Val M.C., Teixeira B., Melanda C., Silva L., Garcia-Cabral I., Torres L., 2013a. Ephestia unicolorella woodiella e Cadra figulilella: duas novas “traças-dauva” presentes nas vinhas do Douro. Actas do 9º Simpósio de Viticultura do Alentejo, Évora, 15-17 de Maio, 159–166. [Google Scholar]
  • Cerdá X., Dejean A., 2011. Predation by ants on arthropods and other animals. Predation in the Hymenoptera. In: An Evolutionary Perspective. 39–78. Polidori C. (Ed.), Transworld Research Network, Kerala, India. [Google Scholar]
  • Convention on Biological Diversity, 1992. Available at: https://www.cbd.int/ (accessed on 25.10.2019). [Google Scholar]
  • Daane K.M., Almeida R.P.P., Bell V.A., Walker J.T.S., Botton M., Fallahzadeh M., Mani M., Miano J.L., Sforza R., Walton V.M., Zaviezo T., 2012. Biology and Management of Mealybugs in Vineyards. In: Arthropod Management in Vineyards, 271–307, Bostanian N., Vincent C., Isaacs R. (eds), Springer, Dordrecht. [CrossRef] [Google Scholar]
  • Daane K.M., Hogg B.N., Wilson H., Yokota G.Y., 2018. Native grass ground covers provide multiple ecosystem services in Californian vineyards. J. Appl. Ecol., 55, 2473–2483. [Google Scholar]
  • Dostál P., Březnová M., Kozlíčková V., Herben T., Kovář P., 2005. Ant induced soil modification and its effect on plant below-ground biomass. Pedobiologia, 49, 127–137. [Google Scholar]
  • ELN-FAB, 2012. Functional agrobiodiversity: Nature serving Europe’s farmers. 60 p. Tilburg, the Netherlands: ECNC-European Centre for Nature Conservation. [Google Scholar]
  • Franco J.C., Silva E.B., Cortegano E., Campos L., Branco M., Zada A., Mendel Z, 2008. Kairomonal response of the parasitoid Anagyrus spec. nov. near pseudococci to the sex pheromone of vine mealybug. Entomol. Exp. Appl., 126, 122–130. [Google Scholar]
  • Garcia L, Celette F, Gary C, Ripoche A, Valdés-Gómez H, Metay A, 2018. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ., 251, 158–170. [Google Scholar]
  • Gardiner M.M., Fiedler A.K., Costamagna A.C., Landis D.A., 2009a. Integrating conservation biological control into IPM systems. In: Integrated pest management: concepts, tactics, strategies and case studies. 151–162. Radcliffe E.B., Hutchison W.D., Cancelado R. (ed.), Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Gardiner M.M., Landis D.A., Gratton C., DiFonzo C.D., O’Neal M., Chacon J.M., Wayo M.T., Schmidt N.P., Mueller E.E., Heimpel G.E., 2009b. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol. Appl., 19, 143–154. [Google Scholar]
  • Gonçalves F., Carlos C., Aranha J., Torres L., 2018a. Does habitat heterogeneity affects soil-surface active arthropods diversity in vineyards? Agric. For. Entomol., 20, 366–379. [Google Scholar]
  • Gonçalves F., Carlos C., Pinto R., Torres L., 2018b. O solo das vinhas da Região Demarcada do Douro está vivo! 56p. Universidade de Trás-os-Montes e Alto Douro. [Google Scholar]
  • Gonçalves F., Carlos C., Sousa S., Nóbrega M., Franco J.C., Manso J., Pinto A., Torres L., 2014c. The use of pheromone traps to monitoring the vine mealybug, Planococcus ficus and its main parasitoid, Anagyrus sp. nr. pseudococci in Douro Wine Region. IOBC-WPRS Bull., 105, 103–111. [Google Scholar]
  • Gonçalves F., Carlos C., Teixeira B., Sousa S., Torres L., 2014b. Contribuição para o estudo da bioecologia da cigarrinha-daflavescência- dourada, Scaphoideus titanus Ball, na Região Demarcada do Douro. Livro de atas do 10º Encontro Nacional de Proteção Integrada, Instituto Politécnico de Beja, Beja, 2 e 3 de Maio, 103–110. [Google Scholar]
  • Gonçalves F., Carlos C., Torres L., 2013c. Inimigos naturais das pragas da vinha: insectos e aracnídeos. Quem são e onde estão? 81p. Associação para o Desenvolvimento da Viticultura Duriense. [Google Scholar]
  • Gonçalves F., Carlos C., Torres L. (Coord.), 2013a. Fauna associada à vinha da Região Demarcada do Douro. 57p. Associação para o Desenvolvimento da Viticultura Duriense. [Google Scholar]
  • Gonçalves F., Nunes C., Carlos C., López Á., Oliveira I., Crespi A., Teixeira B., Pinto R., Costa C.A., Torres L., Do soil management practices affect the activity density, diversity, and stability of soil arthropods in vineyards?. Agric. Ecosyst. Environ. (in press). [Google Scholar]
  • Gonçalves F., Pinheiro L., Carlos C., Sousa S., Santos S., Torres L., 2015a. Biodiversity of hoverflies (Diptera: Syrphidae) and seasonal variation in vineyards of Douro Wine Region, Portugal. Pure, IPM innovation in Europe. Poznan, Poland, 14th - 16th January 2015, 50. [Google Scholar]
  • Gonçalves F., Pinto R., Oliveira I., Crespi A., Coutinho J., Torres L., 2018c. Biochar, compost and biochar-compost as soil amendments to a vineyard soil: effects on soil surface arthropods. II Simpósio Internacional de Águas, Solos e Geotecnologias/ III Jornadas INTERACT. Vila Real, 17 - 18 May 2018, 80. [Google Scholar]
  • Gonçalves F., Zina V., Carlos C., Crespo L., Oliveira I., Torres L., 2017. Ants (Hymenoptera: Formicidae) and spiders (Araneae) cooccurring in the ground of vineyards from Douro Demarcated Region. Sociobiology, 64, 404–416. [CrossRef] [Google Scholar]
  • Gonçalves F., Zina V., Carlos C., Sousa S., Nóbrega M., Franco J.C., Torres L., 2014a. Formigas associadas à cochonilha-algodão, em vinhas da Região Demarcada do Douro. 1º Simpósio SCAP e 7º Congresso SPF - Novos Desafios na Protecção das Plantas. Lisboa, 20 e 21 de Novembro, 89. [Google Scholar]
  • Gonzalez D., Gonçalves F., Carlos C., Torres L., 2015. O medronheiro, Arbutus unedoL., na maximização dos serviços facultados pela vinha da Região Demarcada do Douro. 50p. Vila Real. [Google Scholar]
  • Goula M., Gonçalves F., Carlos C., Torres L., 2016. Heteroptera from vineyards and adjacent vegetation in Douro Demarcated Region (Portugal). XVII Congresso Iberico de Entomologia, Lisboa, 5-8 Setembro 2016. Available at: http://www.advid.pt/imagens/comunicacoes/14736903666147.pdf (accessed on 01.08.2019). [Google Scholar]
  • Hoffmann C., Köckerling J., Biancu S., Gramm T., Michl G., Entling M.H., 2017. Can flowering greencover crops promote biological control in German vineyards? Insects, 8, 121. [Google Scholar]
  • Ioriatti C., Anfora G., Tasin M., de Cristofaro A., Witzgall P., Luchi A., 2011. Chemical Ecology and Management of Lobesia botrana Lepidoptera: Tortricidae. J. Econ. Entomol., 1044, 1125–1137. [Google Scholar]
  • IVDP, 2018. Área de vinha e sua evolução. Estatística geral. Available at: https://www.ivdp.pt/ (accessed on 10.05. 2019). [Google Scholar]
  • Jones G.V., Alves F., 2012. Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. Int. J. Global Warming, 4, 383–406. [CrossRef] [Google Scholar]
  • Jouquet P., Dauber J., Lagerlöf J., Lavelle P., Lepage M., 2006. Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl. Soil Ecol, 32, 153–164. [Google Scholar]
  • Kendall D.A., 2003. Soil tillage and epigeal predatory insects. In: Soil tillage in soil agroecosystems. 297–342. El Titi, A. (Ed), CRC Press. [Google Scholar]
  • Landis D.A., Wratten S.D., Gurr G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol., 45,175–201. [CrossRef] [PubMed] [Google Scholar]
  • Kromp B., 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ., 74, 187–228. [Google Scholar]
  • Larney F.J., Angers D.A., 2012. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci., 92, 19–38. [CrossRef] [Google Scholar]
  • Lehman R.M., Acosta-Martinez V., Buyer J.S., Cambardella C.A., Collins H.P., Ducey T.F., Halvorson J.J., Jin V.L., Johnson J.M.F., Kremer R.J., Lundgren J.G., Manter D.K., Maul J.E., Smith J.L., Stott D.E., 2015. Soil biology for resilient, healthy soil. J. Soil Water Conserv., 70, 12A–18A. [Google Scholar]
  • López-Piñeiro A., Muñoz A., Zamora E., Ramírez M., 2013. Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semiarid conditions. Soil Till. Res., 126, 119–126. [CrossRef] [Google Scholar]
  • Lucchi A., Benelli G., 2018. Towards pesticide-free farming? Sharing needs and knowledge promotes Integrated Pest Management. Environ. Sci. Pollut. Res. Available at: https://doi.org/10.1007/s11356-018-1919-0 (accessed on 10.05.2019). [Google Scholar]
  • Mgocheki N., Addison P., 2009. Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol. Control, 49, 180–185. [Google Scholar]
  • Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC. [Google Scholar]
  • Nair V.D., Nair P.K.R., Dari B., Freitas A.M., Chatterjee N., Pinheiro F.M., 2017. Biochar in the Agroecosystem–Climate- Change–Sustainability Nexus. Front. Plant Sci., 8, 2051. [Google Scholar]
  • Nunes C., Teixeira B., Carlos C., Gonçalves F., Martins M., Crespí A., Sousa S., Torres L., Costa C.A., 2015. Biodiversidade do solo em vinhas com e sem enrelvamento. Rev. Ciênc. Agrár., 38, 248–257. [Google Scholar]
  • Pavan F., Picotti P., 2009. Influence of grapevine cultivars on the leafhopper Empoasca vitis and its egg parasitoids. BioControl, 54, 55–63. [CrossRef] [Google Scholar]
  • Pekár S., Coddington J.A., Blackledge T.A., 2012. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution, 66, 776–806. [Google Scholar]
  • Power A.G. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B, 365, 2959–2971. [CrossRef] [Google Scholar]
  • Prosdocimi M., Cerdà A., Tarolli P., 2016b. Soil water erosion on Mediterranean vineyards: A review. Catena, 141, 1–21. [CrossRef] [Google Scholar]
  • Reis S.C.M. 2018. Construção de uma base de dados interactiva dos artrópodes associados à vinha da Região Demarcada do Douro. 120p. Dissertação de Mestrado, Universidade de Trás-os-Montes e Alto Douro. [Google Scholar]
  • Reis S., Gonçalves F., Oliveira P., Carlos C., Torres L., 2018. A web application for the identification of arthropods associated with vineyard of Douro Demarcated Region. Infowine.forum 2018, Vila Real, 23 e 24 de Maio 2018. [Google Scholar]
  • Rodriguez-Saona C., Blaauw B.R., Isaacs R, 2012. Manipulation of Natural Enemies in Agroecosystems: Habitat and Semiochemicals for Sustainable Insect Pest Control, Integrated Pest Management and Pest Control - Current and Future Tactics, Dr. Sonia Soloneski (Ed.), ISBN: 978-953-51-0050-8, InTech. Available at: http://www.intechopen.com/books/integrated-pest-managementand-pestcontrol-current-and-future-tactics/manipulation-of-naturalenemies-in-agroecosystems-habitat-andsemiochemicals-forsustainable-insect (accessed on 01/08/2019). [Google Scholar]
  • Rusch A., Chaplin-Kramer R., Gardiner M.M., Hawro V., Holland J., Landis D., Thies C., Tscharntke T., Weisser W.W., Winqvist C., Woltz M., Bommarco R., 2016. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ., 221, 198–204. [Google Scholar]
  • Sandhu H., Wratten S., Costanza R., Pretty J., Porter J.R., Reganold J., 2015. Significance and value of non-traded ecosystem services on farmland. PeerJ, 3, e762. [CrossRef] [PubMed] [Google Scholar]
  • Santos J.P., 2014. Projecto EcoVitis. Documentário. Available at: https://www.youtube.com/watch?v=QgklznjGBLU (accesses on 01.08.2019) [Google Scholar]
  • Saunders M.E., 2018. Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agric. For. Entomol., 20, 298–300. [Google Scholar]
  • Secretariat of the Convention on Biological Diversity, 2014. Available at: Global Biodiversity Outlook 4. www.cbd.int/GBO4 (accessed on 25.10.2019). [Google Scholar]
  • Sharma L., Gonçalves F., Oliveira I., Torres L., Marques G., 2018. Insect-associated fungi from naturally mycosed vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biocontrol Sci. Technol., 28, 122–141. [CrossRef] [Google Scholar]
  • Schmidt H-P., Kammann C., Niggli C., Evangelou M.W.H., Mackie K.A., Abiven S., 2014. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosyst. Environ., 191, 117–123. [Google Scholar]
  • Tacoli F., Pavan F., Cargnus E., Tilatti E., Pozzebon A., Zandigiacomo P., 2017. Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards. J. Econ. Entomol., 110, 1164–1178. [CrossRef] [PubMed] [Google Scholar]
  • Thiéry D., Louâpre P., Muneret L., Rusch A., Sentenac G, Vogelweith F, Iltis C, Moreau J., 2018. Biological protection against grape berry moths. A review. Agron Sustain Dev, 38, 15. Available at: https://doi.org/10.1007/s13593-018-0493-7 (accessed on 10.05.2019). [Google Scholar]
  • Thomson L.J., Hoffmann A.A., 2007. Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agric. For. Entomol. 9, 173–179. [Google Scholar]
  • Van Swaay C., Cuttelod A., Collins S., Maes D., López Munguira M., Šašić M., Settele J., Verovnik R., Verstrael, T., Warren M., Wiemers M., Wynhof I., 2010. European Red List of Butterfies Luxembourg: Publications Office of the European Union [Google Scholar]
  • Ward, P.S. (2006). Ants. Current Biology, 16, R152–R154. [CrossRef] [Google Scholar]
  • Wezel A., Casagrande M., Celette F., Vian J-F., Ferrer A., Peigné J., 2014. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev., 34, 1–20. [Google Scholar]
  • Wise, D. (1993). Spiders in ecological webs. 328p. Cambridge University Press, Cambridge. [Google Scholar]
  • Wood S.A., Karp D.S., DeClerck F., Kremen C., Naeem S., Palm C.A., 2015. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol., 30, 531–539. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.