Open Access
Ciência Téc. Vitiv.
Volume 34, Number 2, 2019
Page(s) 115 - 122
Published online 11 December 2019
  • Al-Hatamleh M.A.I., Hussin T., Taib W.R.W., Ismail I., 2019. TheBrain-Derived Neurotrophic Factor (BDNF) gene Val66Met(rs6265) polymorphism and stress among preclinical medicalstudents in Malaysia. J. Taibah Univ. Med. Sci., 14, 431-438. [PubMed] [Google Scholar]
  • Amor S., Chalons P., Aires V., Delmas D., 2018. PolyphenolExtracts from Red Wine and Grapevine: Potential Effects onCancers. Diseases, 6. [Google Scholar]
  • Badescu S.V., Tataru C., Kobylinska L., Georgescu E.L., ZahiuD.M., Zagrean A.M., Zagrean L., 2016. The association between Diabetes mellitus and Depression. J. Med. Life, 9, 120-125. [PubMed] [Google Scholar]
  • Buttenschon H.N., Foldager L., Elfving B., Poulsen P.H., Uher R., Mors O., 2015. Neurotrophic factors in depression in response totreatment. J. Affect. Disord., 183, 287-294. [CrossRef] [PubMed] [Google Scholar]
  • Cerniauskas I., Winterer J., de Jong J.W., Lukacsovich D., Yang H.,Khan F., Lammel S., 2019. Chronic stress induces activity,synaptic, and transcriptional remodeling of the lateral habenul aassociated with deficits in motivated behaviors. Neuron, doi:10.1016/j.neuron.2019.09.005. [Google Scholar]
  • Chiba S., Numakawa T., Ninomiya M., Richards M.C., Wakabayashi C., Kunugi H., 2012. Chronic restraint stress causesanxiety- and depression-like behaviors, downregulatesglucocorticoid receptor expression, and attenuates glutamaterelease induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry, 39, 112-119. [CrossRef] [PubMed] [Google Scholar]
  • Chong S.A., Vaingankar J., Abdin E., Subramaniam M., 2012. Theprevalence and impact of major depressive disorder amongChinese, Malays and Indians in an Asian multi-racial population. J.Affect. Disord., 138, 128-136. [CrossRef] [PubMed] [Google Scholar]
  • Dean J., Keshavan M., 2017. The neurobiology of depression: Anintegrated view. Asian J. Psychiatr., 27, 101-111. [Google Scholar]
  • Ding H., Cui X.Y., Cui S.Y., Ye H., Hu X., Zhao H.L., Zhang Y.H., 2018. Depression-like behaviors induced by chronic corticosterone exposure via drinking water: Time-course analysis. Neurosci. Lett., 687, 202-206. [CrossRef] [PubMed] [Google Scholar]
  • Fenton E.Y., Fournier N.M., Lussier A.L., Romay-Tallon R., Caruncho H.J., Kalynchuk L.E., 2015. Imipramine protects againstthe deleterious effects of chronic corticosterone on depression-likebehavior, hippocampal reelin expression, and neuronal maturation. Prog. Neuropsychopharmacol. Biol. Psychiatry, 60, 52-59. [CrossRef] [PubMed] [Google Scholar]
  • Gerritsen L., Milaneschi Y., Vinkers C.H., van Hemert A.M., van Velzen L., Schmaal L., Penninx B.W., 2017. HPA axis genes, and their interaction with childhood maltreatment, are related to cortisollevels and stress-related phenotypes. Neuropsychopharmacology, 42, 2446-2455. [CrossRef] [PubMed] [Google Scholar]
  • Jani B.D., Boachie C., McCowan C., Barry S.J.E., Cavanagh J., Mair F.S., 2017. Relationship of depression screening incardiometabolic disease with vascular events and mortality:findings from a large primary care cohort with 4 years follow-up. Eur. Heart J. Qual. Care Clin. Outcomes, 3, 61-73. [CrossRef] [PubMed] [Google Scholar]
  • Kruk-Slomka M., Michalak A., Biala G., 2015. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system. Behav. Brain Res., 284, 24-36. [CrossRef] [PubMed] [Google Scholar]
  • Leistner C., Menke A., 2018. How to measure glucocorticoid receptor's sensitivity in patients with stress-related psychiatric disorders. Psychoneuro endocrinology, 91, 235-260. [CrossRef] [Google Scholar]
  • Lima-Ojeda J.M., Rupprecht R., Baghai T.C., 2018. Neurobiology of depression: A neurodevelopmental approach. World J. Biol. Psychiatry, 19, 349-359. [CrossRef] [PubMed] [Google Scholar]
  • Luo L., Liu X.L., Mu R.H., Wu Y.J., Liu B.B., Geng D., Yi L.T., 2015. Hippocampal BDNF signaling restored with chronic asiaticoside treatment in depression-like mice. Brain Res. Bull., 114, 62-69. [CrossRef] [PubMed] [Google Scholar]
  • Mao X.Y., Cao Y.G., Ji Z., Zhou H.H., Liu Z.Q., Sun H.L., 2015. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry, 60, 11-17. [CrossRef] [PubMed] [Google Scholar]
  • Mattera R., Benvenuto M., Giganti M.G., Tresoldi I., Pluchinotta F.R., Bergante S., Bei R., 2017. Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients, 9. [Google Scholar]
  • Mendez-David I., Tritschler L., Ali Z.E., Damiens M.H., Pallardy M., David D.J., Gardier A.M., 2015. Nrf2-signaling and BDNF: Anew target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci. Lett., 597, 121-126. [CrossRef] [PubMed] [Google Scholar]
  • Menke A., 2019. Is the HPA Axis as Target for Depression Outdated, or Is There a New Hope? Front. Psychiatry, 10, 101. [CrossRef] [PubMed] [Google Scholar]
  • Mulero J., Martinez G., Oliva J., Cermeno S., Cayuela J.M.,Zafrilla P., Barba A., 2015. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides. Food Chem., 180, 25-31. [Google Scholar]
  • Nash V., Ranadheera C.S., Georgousopoulou E.N., Mellor D.D., Panagiotakos D.B., McKune A.J., Naumovski N., 2018. The effects of grape and red wine polyphenols on gut microbiota - A systematic review. Food Res. Int., 113, 277-287. [Google Scholar]
  • Obasi E.M., Chen T.A., Cavanagh L., Smith B.K., Wilborn K.A., McNeill L.H., Reitzel L.R., 2019. Depression, perceived social control, and hypothalamic-pituitary-adrenal axis function in African-American adults. Health Psychol. doi:10.1037/hea0000812 [Google Scholar]
  • Patki G., Ali Q., Pokkunuri I., Asghar M., Salim S., 2015. Grape powder treatment prevents anxiety-like behavior in a rat model of aging. Nutr. Res., 35, 504-511. [Google Scholar]
  • Reinhart V., Bove S.E., Volfson D., Lewis D.A., Kleiman R.J., Lanz T.A., 2015. Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol. Dis., 77, 220-227. [CrossRef] [PubMed] [Google Scholar]
  • Rzepa E., McCabe C., 2019. Dimensional anhedonia and the adolescent brain: reward and aversion anticipation, effort and consummation. B. J. Psych. Open, 5, e99. [CrossRef] [Google Scholar]
  • Sahin T.D., Karson A., Balci F., Yazir Y., Bayramgurler D., Utkan T., 2015. TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression. Behav. Brain Res., 292, 233-240. [CrossRef] [PubMed] [Google Scholar]
  • Solanki N., Alkadhi I., Atrooz F., Patki G., Salim S., 2015. Grape powder prevents cognitive, behavioral, and biochemical impairments in a rat model of posttraumatic stress disorder. Nutr.Res., 35, 65-75. [CrossRef] [PubMed] [Google Scholar]
  • Sun B., Neves A.C., Fernandes T.A., Fernandes A.L., Mateus N., De Freitas V., Spranger M.I., 2011. Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. J. Agric. Food Chem., 59, 6550-6557. [CrossRef] [PubMed] [Google Scholar]
  • Sun B., Spranger I., Yang J., Leandro C., Guo L., Canario S., Wu C., 2009. Red wine phenolic complexes and their in vitro antioxidant activity. J. Agric. Food Chem., 57, 8623-8627. [CrossRef] [PubMed] [Google Scholar]
  • Tian P., Zou R., Song L., Zhang X., 2019. Ingestion of Bifidobacterium longum subspecies infantis strain CCFM687 regulated emotional behavior and the central BDNF pathway inchronic stress-induced depressive mice through reshaping the gut microbiota. Food Funct., 10, 7588-7598. [Google Scholar]
  • Wang C., Guo J., Guo R., 2017. Effect of XingPiJieYu decoction on spatial learning and memory and cAMP-PKA-CREB-BDNF pathway in rat model of depression through chronic unpredictable stress. BMC Complement. Altern. Med., 17, 73. [CrossRef] [PubMed] [Google Scholar]
  • Yu P., Zhang H., Li X., He F., Tai, F. 2015. Early bi-parental separation or neonatal paternal deprivation in mandarin voles reduces adult offspring paternal behavior and alters serum corticosterone levels and neurochemistry. Horm. Behav., 73, 8-14. [CrossRef] [PubMed] [Google Scholar]
  • Zhang H., Sun Y., Qian S., Ge R., Guo X., Shen Q., Chen G., 2019a. Yueju-Ganmaidazao Decoction confers rapid antidepressant-like effects and the involvement of suppression of NMDA/NO/cGMP signaling. J. Ethnopharmacol., doi:10.1016/j.jep.2019.112380. [Google Scholar]
  • Zhang H., Zhao Y., Wang Z., 2015. Chronic corticosterone exposure reduces hippocampal astrocyte structural plasticity and induces hippocampal atrophy in mice. Neurosci. Lett., 592, 76-81. [CrossRef] [PubMed] [Google Scholar]
  • Zhang S.S., Tian Y.H., Jin S.J., Wang W.C., Zhao J.X., Si X.M., Jin J.Y., 2019b. Isoflurane produces antidepressant effects inducing BDNF-TrkB signaling in CUMS mice. Psychopharmacology, 236, 3301-3315. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.