Open Access
Issue
Ciência Téc. Vitiv.
Volume 32, Number 2, 2017
Page(s) 126 - 141
DOI https://doi.org/10.1051/ctv/20173202126
Published online 15 January 2018
  • Adams D.O., 2006. Phenolics and ripening in grape berries. Am. J. Enol. Viticult., 57, 249-256. [Google Scholar]
  • Ali K., Maltese F., Choi Y.H., Verpoorte R., 2010. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rer., 9, 357-378. [CrossRef] [PubMed] [Google Scholar]
  • Barata A., Malfeito-Ferreira M., Loureiro V., 2012. The microbial ecology of wine grape berries. Int. J. Food Microbiol., 153, 243-259. [CrossRef] [PubMed] [Google Scholar]
  • Bindon K., Varela C., Kennedy J., Holt H., Herderich M., 2013. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon: 1. Grape and wine chemistry. Food Chem., 138, 1696-1705. [CrossRef] [PubMed] [Google Scholar]
  • Bobeica N., Poni S., Hilbert G., Renaud C., Gomès E., Delrot S., Dai Z., 2015. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Front. Plant Sci., 6, 1-14. [CrossRef] [PubMed] [Google Scholar]
  • Bokulich N.A., Thorngate J.H., Richardson P.M., Mills D.A., 2013. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS, 25, 139-148. [Google Scholar]
  • Bondada B.R., Keller M., 2012. Not all shrivels are created equal-morpho-anatomical and compositional characteristics differ among different shrivel types that develop during ripening of grapes (Vitis vinifera L.) berries. Am. J. Plant Sci., 3, 879-898. [CrossRef] [Google Scholar]
  • Cadot Y., Miñana-Castelló M.T., Chevalier M., 2006. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet Franc during fruit development. J. Agric. Food Chem., 54, 9206-9215. [CrossRef] [PubMed] [Google Scholar]
  • Carlomagno A., Schubert A., Ferrandino A., 2016. Screening and evolution of volatile compounds during ripening of ‘Nebbiolo’, ‘Dolceto’ and ‘Barbera’ (Vitis vinifera L.) neutral grapes by SBSE-GC/MS. Eur. Food Res. Technol., 242, 1221-1233. [CrossRef] [Google Scholar]
  • Castellarin S.D., Gambetta G.A., Wada H., Krasnow M.N., Cramer G.R., Peterlunger E., Shackel K.A., Matthews M.A., 2016. Characterization of major ripening events during softening in grape: Turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. J. Exp. Bot., 67, 709-722. [CrossRef] [PubMed] [Google Scholar]
  • Chatelet D.S., Rost T.L., Shackel K.A., Matthews M.A., 2008. The peripheral xylem of grapevine (Vitis vinifera) berries. 1. Structural integrity in post-veraison berries. J. Exp. Bot., 59, 1987-1996. [CrossRef] [PubMed] [Google Scholar]
  • Choat B., Gambetta G.A., Shackel K.A., Matthews M.A., 2009. Vascular function in grape berries across development and its relevance to apparent hydraulic isolation. Plant Physiol., 151, 1677-1687. [CrossRef] [PubMed] [Google Scholar]
  • Conde C., Fontes N., Dias A.C.P., Tavares R.M., Souza M.J., Agasse A., Delrot S., Geros H., 2007. Biochemical changes throughout grape berry development and fruit and wine quality. Food, 1, 1-22. [Google Scholar]
  • Coombe B.G., Mccarthy M.G., 2000. Dynamics of grape berry growth and physiology of ripening. Aust. J. Grape Wine R., 6, 131-135. [CrossRef] [Google Scholar]
  • Cosme F., Gonçalves B., Inês A., Jordão A.M., Vilela A., 2016. Grape and wine metabolites: biotechnological approaches to improve wine quality. In: Grape and wine biotechnology. 187-224. Morata A., Loira I. (eds.), INTECH, Rijeka/Croacia. [Google Scholar]
  • Dai Z.W., Ollat N., Gomès E., Decroocq S., Tandonnet J.P., Bordenave L., Pieri P., Hilbert G., Kappel C., Leeuwen C., Vivin P., Delrot S., 2011. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am. J. Enol. Vitic., 62, 413-425. [CrossRef] [EDP Sciences] [Google Scholar]
  • Davis C., Bottcher C., 2009. Hormonal control of grape berry ripening. In: Grapevine molecular physiology & biotechnology. 229-261. Roubelakis-Angelis K.A. (ed.), Springer Science, 2nd edition. [CrossRef] [Google Scholar]
  • Dokoozlian N.K., 2000. Chapter 5: Grape berry growth and development. In: Raisin production manual. 30-37. Cristensen L.P., (ed.). University of California, 1nd. edition. [Google Scholar]
  • Flamini R., Mattivi F., Rosso M., Arapitsas P., Bavaresco L., 2013. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci., 14, 19651-19669. [CrossRef] [PubMed] [Google Scholar]
  • Fortes A.M., Teixeira R.T., Agudelo-Romero P., 2015. Complex interplay of hormonal signals during grape berry ripening. Molecules, 20, 9326-9343. [CrossRef] [PubMed] [Google Scholar]
  • Fredes C., Bennewitz E.V., Holzapfel E., Saavedra F., 2010. Relation between seed appearance and phenolic maturity: a case study using grapes cv. Carmenere. Chilean J. Agr. R., 70, 381-389. [Google Scholar]
  • Fredes C., Mora M., Carrasco-Benavides M., 2017. Na analysis of seed colour during ripening of Cabernet Sauvignon grapes. S. Afr. J. Enol. Vitic., 38, 38-45. [Google Scholar]
  • Fregoni M., 1999. Viticoltura di qualità. 705 p. Piacenza, 2a ed. [Google Scholar]
  • Gilbert J.A., Lelie D.V., Zarraonaindia I., 2014. Microbial terroir for wine grapes. PNAS, 111, 5-6. [CrossRef] [Google Scholar]
  • González-Barreiro C., Rial-Otero R., Cancho-Grande B., Simal-Gárdara J., 2015. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci., 55, 202-218. [CrossRef] [Google Scholar]
  • Guerra C.C., 2012. Polifenóis da uva e do vinho. Rev. Bras. Viticult. Enol., 4, 90-100. [Google Scholar]
  • Holt H.E., Francis I.L., Field J., Herderich M.J., Iland P.G., 2008. Relationships between wine phenolic composition and wine sensory properties for Cabernet Sauvignon (Vitis vinifera L.). Aust. J. Grape Wine R., 14, 162-176. [Google Scholar]
  • Ilc T., Werck-Reichhart D., Navrot N., 2016. Meta-analysis of the core aroma components of grape and wine aroma. Front. Plant Sci., 7, 1-15. [PubMed] [Google Scholar]
  • Kalua C.M., Boss, P.K., 2010. Comparison of major volatile compounds from Riesling and Cabernet Sauvignon grapes (Vitis vinifera L.) from fruitset to harvest. Aust. J. Grape Wine R., 16, 337-348. [CrossRef] [Google Scholar]
  • Keller M., 2010. The Science of grapevines. Anatomy and Physiology. 368p. Elsevier, Academic Press, Burlington. [Google Scholar]
  • Keller M., Smith J.P., Bondada B.R., 2006. Ripening grape berries remain hydraulically connected to the shoot. J. Exp. Bot., 57, 2577-2587. [CrossRef] [PubMed] [Google Scholar]
  • Kennedy J.A., Matthews M.A., Waterhouse A.L., 2000. Changes in grape seed polyphenols during fruit ripening. Phytochem., 55, 77-85. [CrossRef] [PubMed] [Google Scholar]
  • Kuhn N., Guan L., Dai Z.W., Wu B., Lauvergeat V., Gomès E., Li S., Godoy F., Arce-Johnson P., Delrot S., 2013. Berry ripening: recently heard through the grapevine. J. Exp. Bot., 65, 4543-4559. [CrossRef] [PubMed] [Google Scholar]
  • Lund S.T., Bohlmann J., 2006. The molecular basis for wine grape quality – a volatile subject. Science, 311, 804-805. [CrossRef] [PubMed] [Google Scholar]
  • Lund C.M., Nicolau L., Gardner R.C., Kilmartin P.A., 2009. Effect of polyphenols on the perception of key aroma compounds from Sauvignon Blanc wine. Aust. J. Grape Wine R., 15, 18-26. [CrossRef] [Google Scholar]
  • Obreque-Slier E., Peña-Neira A., López-Solís R., Zamora-Marín F., Ricardo-da-Silva J.M., Laureano O., 2010. Comparative study of the phenolics composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening. J. Agric. Food Chem., 58, 3591-3599. [CrossRef] [PubMed] [Google Scholar]
  • Ollat N., Diakou-Verdin P., Carde J.P., Barrieu F., Gaudillère J.P., Moing A., 2002. Grape berry development: a review. J. Int. Sci. Vigne Vin, 36, 109–131. [Google Scholar]
  • Pagay V., Cheng L., 2010. Variability in berry ripening of Concord and Cabernet Franc in a cool climate. Am. J. Enol. Vitic., 60, 61-67. [Google Scholar]
  • Paul V., Pandey R., Srivastava G.C., 2012. The fading distinctions between classical patterns of ripening in climacteric and non-climateric fruit and the ubiquity of ethylene – An overview. J. Food Sci. Technol., 49, 1-21. [CrossRef] [PubMed] [Google Scholar]
  • Pilati S., Brazzale D.; Guella G., Milli A., Ruberti C., Biasioli F., Zottini M., Moser C., 2014. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC Plant Biol., 14, 1-15. [CrossRef] [PubMed] [Google Scholar]
  • Pinney, T., 1989. A history of wine in America: From the beginnings to prohibition. 572p. University of California Press, Berkeley. [Google Scholar]
  • Pisciotta A., Barbagallo M.G., Di Lorenzo R., Hunter, J.J., 2013. Anthocyanin variation in individual ‘Shiraz' berries as affected by exposure and position on the rachis. Vitis, 52, 111-115. [Google Scholar]
  • Ribéreau-Gayon P.; Glories Y., Maujean A., Dubourdieu D., 2006. Handbook of Enology: The chemistry of wine. Stabilization and treatments. vol. 2, 2nd ed. 451p. John Wiley & Sons, West Sussex. [Google Scholar]
  • Ristic R., Iland P.G., 2005. Relationships between seed and berry development of Vitis vinifera L. cv Shiraz: developmental changes in seed morphology and phenolic composition Aust. J. Grape Wine R., 11, 1-16. [Google Scholar]
  • Robinson A.L., Boss P., Solomon P.S., Trengove R.D., Heymann H., Ebeler S.E., 2014. Origin of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic., 65, 1-24. [CrossRef] [Google Scholar]
  • Robinson S.P., Davies C., 2000. Molecular biology of grape berry ripening. Aust. J. Grape Wine R., 6, 175-188. [CrossRef] [Google Scholar]
  • Styger G., Prior B., Bauer F.F., 2011. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol., 38, 1145-1159. [CrossRef] [PubMed] [Google Scholar]
  • Sun Q., Gates M.J., Lavin E.H., Acree T.E., Sacks G.L., 2011. Comparison of odor-active compounds in grapes and wines from Vitis viniferas and non-foxy American grape species. J. Agric. Food Chem., 59, 10657-10664. [CrossRef] [PubMed] [Google Scholar]
  • Tarter M.E., Keuter S.E., 2005. Effect of rachis position on size and maturity of Cabernet Sauvignon berries. Am. J. Enol. Vitic., 56, 86-89. [Google Scholar]
  • Teixeira A., Eiras-Dias J., Castellarin S.D., Geros H., 2013. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci., 14, 18711-18739. [CrossRef] [PubMed] [Google Scholar]
  • Wang J., Luca V., 2005. The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ‘foxy' methylanthranilate. The Plant J., 44, 606-619. [CrossRef] [Google Scholar]
  • Winkler A.J., Cook J.A., Kliewer W.M., Lider L.A., 1974. General viticulture. 2nd. Edition. 710p. University of California. [Google Scholar]
  • Zhu B., Wu Y., Xu X., Pan Q., Duan C., 2012. Changes of 3-alkyl-2-methoxypyrazines in development Cabernet Sauvignon (Vitis vinifera) and Zuoshanyi (Vitis amurensis Rupr.) grapes from North China. S. Afr. J. Enol. Vitic., 33, 132-136. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.