Open Access
Ciência Téc. Vitiv.
Volume 32, Number 2, 2017
Page(s) 142 - 153
Published online 15 January 2018
  • Agosta E., Canziani P., Cavagnaro M., 2012. Regional climate variability impacts on the annual grape yield in Mendoza, Argentina. J. Appl. Meteorol. Clim., 51, 993-1009. [CrossRef] [Google Scholar]
  • Alves F., Edlmann M., Costa J., Costa P., Macedo P., Leal da Costa P., Symington C., 2013. Heat requirements and length of phenological stages. Effects of rootstock on red grape varieties at Douro Region. 18° Internacional Symposium GIESCO, Porto, 7-11 Julho 2013. [Google Scholar]
  • Anderson J.D., Jones G.V., Tait A., Hall A., Trought, M.C.T., 2012. Analysis of viticulture region climate structure and suitability in New Zealand. J. Int. Sci. Vigne Vin, 46, 149-165. [Google Scholar]
  • Anderson K., Aryal N.R., 2013.Which winegrape varieties are grown where? A global empirical picture. University of Adelaide Press, Australia, 700p. [Google Scholar]
  • Bettiga L.J., Smith R., Cahn M., 2012. Evaluation of the impacts of in-row vineyard floor management practices on soil and water erosion, vine growth, and productivity of grapevines. Am. J. Enol. Vitic., 63, 441a-441a. [Google Scholar]
  • Bindi M., Fibbi L., Gozzini B., Orlandini S., Miglietta F., 1996. Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim. Res., 7, 213-224. [CrossRef] [Google Scholar]
  • Böhm, J., 2010. Portugal viticola: o grande livro das castas. C. Ferreira, Lisbon, Portugal, 234 pp. [Google Scholar]
  • Camps J.O., Ramos M.C., 2012. Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. Int. J. Biometeorol., 56, 853-64. [CrossRef] [PubMed] [Google Scholar]
  • Carey V.A., Saayman D., Archer E., Barbeau G., Wallace M., 2008. Viticultural terroirs in Stellenbosch, South Africa. I. The identification of natural terroir units. J. Int. Sci. Vigne Vin, 42, 169-183. [Google Scholar]
  • Clingeleffer P., 2014. Terroir: The application of an old concept in modern viticulture. In: N.K.V. Alfen (Editor), Encyclopedia of Agriculture and Food Systems. Academic Press, Oxford, pp. 277-288. [CrossRef] [Google Scholar]
  • Costa R., Fraga H., Fernandes P.M., Santos J.A., 2017. Implications of future bioclimatic shifts on Portuguese forests. Reg. Environ. Change, 17, 117-127. [CrossRef] [Google Scholar]
  • Costantini E.A.C., Lorenzetti R., Malorgio G., 2016. A multivariate approach for the study of environmental drivers of wine economic structure. Land Use Policy, 57, 53-63. [CrossRef] [Google Scholar]
  • Cunha M., Richter C., 2016. The impact of climate change on the winegrape vineyards of the Portuguese Douro region. Clim. Change, 138, 239-251. [CrossRef] [Google Scholar]
  • Douglas D., Cliff M.A., Reynolds A.G., 2001. Canadian terroir: characterization of Riesling wines from the Niagara Peninsula. Food Res. Int., 34, 559-563. [CrossRef] [Google Scholar]
  • EEA, 2002. CORINE Land Cover update, I&CLC2000 project, Technical Guidelines. [Google Scholar]
  • Failla O., Mariani L., Brancadoro L., Minelli R., Scienza A., Murada G., Mancini S., 2004. Spatial distribution of solar radiation and its effects on vine phenology and grape ripening in an alpine environment. Am. J. Enol. Vitic., 55, 128-138. [Google Scholar]
  • Fan Y., Li H., Miguez-Macho G., 2013. Global patterns of groundwater table depth. Science, N.Y., 339, 940-943. [CrossRef] [PubMed] [Google Scholar]
  • FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria. [Google Scholar]
  • Fraga H., Amraoui M., Malheiro A.C., Moutinho-Pereira J., Eiras-Dias J., Silvestre J., Santos J.A., 2014a. Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. Eur. J. Remote Sens., 47, 753-771. [CrossRef] [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Jones G.V., Alves F., Pinto J.G., Santos J.A., 2014b. Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Reg. Environ. Change, 14, 295-306. [CrossRef] [Google Scholar]
  • Fraga H., Costa R., Moutinho-Pereira J., Correia C.M., Dinis L.-T., Gonçalves I., Silvestre J., Eiras-Dias J., Malheiro A.C., Santos J.A., 2015. Modeling phenology, water status, and yield components of three Portuguese grapevines using the STICS crop model. Am. J. Enol. Vitic., 66, 482-491. [CrossRef] [Google Scholar]
  • Fraga H., García de Cortázar Atauri I., Malheiro A.C., Santos J.A., 2016a. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biol., 22, doi:10.1111/gcb.13382. [Google Scholar]
  • Fraga H., Santos J.A., Moutinho-Pereira J., Carlos C., Silvestre J., Eiras-Dias J., Mota T., Malheiro A.C., 2016b. Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J. Agric. Sci., 154, 795-811. [CrossRef] [Google Scholar]
  • Fraga H., Santos J.A., 2017. Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Aust. J. Grape Wine R., 23, 296-304. [CrossRef] [Google Scholar]
  • Fraga H., García de Cortázar Ataur, I., Santos J.A., 2018. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag., 196, 66-74. [CrossRef] [Google Scholar]
  • GTOPO30, Global 30 Arc-Second Elevation (GTOPO30), USGS Products. Data available from the U.S. Geological Survey. [Google Scholar]
  • Hall A., Jones G.V., 2010. Spatial analysis of climate in winegrapegrowing regions in Australia. Aust. J. Grape Wine R., 16, 389-404. [CrossRef] [Google Scholar]
  • Harbertson J.F., Keller M., 2012. Rootstock effects on deficit-irrigated winegrapes in a dry climate: grape and wine composition. Am. J. Enol. Vitic., 63, 40-48. [CrossRef] [Google Scholar]
  • Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim., 25, 1965-1978. [CrossRef] [Google Scholar]
  • Holm A., Burnsid, D., Mitchell A., 1987. The development of a system for monitoring trend in range condition in the arid shrublands of Western Australia. The Rangeland Journal, 9, 14-20. [CrossRef] [Google Scholar]
  • Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195-213. [CrossRef] [Google Scholar]
  • IVV, 2015. Vinhos e aguardentes de Portugal, Anuário 2015. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas: Instituto da Vinha e do Vinho, Lisboa: 236. [Google Scholar]
  • Johnson L.F., Bosch D.F., Williams D.C., Lobitz B.M., 2001. Remote sensing of vineyard management zones: Implications for wine quality. Appl. Eng. Agric., 17, 557-560. [CrossRef] [Google Scholar]
  • Johnson L.F., Roczen D.E., Youkhana S.K., Nemani R.R., Bosch D.F., 2003. Mapping vineyard leaf area with multispectral satellite imagery. Comput. Electron. Agric., 38, 33-44. [CrossRef] [Google Scholar]
  • Jones G.V., Davis R.E., 2000. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic., 51, 249-261. [Google Scholar]
  • Jones G.V., 2006. Climate and terroir: Impacts of climate variability and change on wine in fine wine and terroir – The geoscience perspective. Macqueen, R.W., and Meinert, L.D., (eds.). Geoscience Canada, Geological Association of Canada, Newfoundland, Canada. [Google Scholar]
  • Jones G.V., Duff A.A., Hall A., Myers J.W., 2010. Spatial analysis of climate in winegrape growing regions in the Western United States. Am. J. Enol. Vitic., 61, 313-326. [Google Scholar]
  • Jones G.V., Alves F., 2012. Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. Int. J. of Global Warming, 4, 383-406. [CrossRef] [Google Scholar]
  • Judit G., Gabor Z., Adam D., Tamas V., Gyorgy B., 2011. Comparison of three soil management methods in the Tokaj wine region. Mitt Klosterneuburg, 61, 187-195. [Google Scholar]
  • Keller M., 2010. The science of grapevines: Anatomy and physiology. Elsevier, Inc. 400pp. [Google Scholar]
  • Kizildeniz T., Mekni I., Santesteban H., Pascual I., Morales F., Irigoyen J.J., 2015. Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agric. Water Manag., 159, 155-164. [CrossRef] [Google Scholar]
  • Lopes J., Eiras-Dias J.E., Abreu F., Climaco P., Cunha J.P., Silvestre J., 2008. Thermal requirements, duration and precocity of phenological stages of grapevine cultivars of the Portuguese collection. Ciencia Tec. Vitiv., 23, 61-71. [Google Scholar]
  • Mackenzie D.E., Christy A.G., 2005. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Wat. Sci. Technol., 51, 27-37. [CrossRef] [Google Scholar]
  • Magalhães N., 2008. Tratado de viticultura: a videira, a vinha e o terroir. Chaves Ferreira, Lisboa, Portugal, 605 pp. [Google Scholar]
  • Moral F.J., Rebollo F.J., Paniagua L.L., Garcia-Martin A., 2016. A GIS-based multivariate clustering for characterization and ecoregion mapping from a viticultural perspective. Span. J. Agric. Res., 14. [Google Scholar]
  • Morlat R., Jacquet A., 2003. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Vitic., 54, 1-7. [Google Scholar]
  • Nascimbene J., Marini L., Ivan D., Zottini M., 2013. Management intensity and topography determined plant diversity in vineyards. Plos One, 8, 7. [CrossRef] [Google Scholar]
  • Nunez J.C.H., Ramazzotti S., Stagnari F., Pisante M., 2011. A multivariate clustering approach for characterization of the Montepulciano d'Abruzzo Colline Teramane area. Am. J. Enol. Vitic. 62, 239-244. [CrossRef] [Google Scholar]
  • OIV, 2010. Resolution OIV/VITI 333/2010, Definition of vitivinicultural “TERROIR”, Tbilisi, 25th June 2010. [Google Scholar]
  • Oliveira C., Barbosa A., Ferreira A.C., Guerra J., De Pinho P.G., 2005. Douro grape characterization: Carotenoid profile in grapes related to aromatic compounds in wine. Am. J. Enol. Vitic., 56, 306a-307a. [Google Scholar]
  • Pavlousek P., 2011. Evaluation of drought tolerance of new grapevine rootstock hybrids. J. Environ. Biol., 32, 543-549. [PubMed] [Google Scholar]
  • Permanhani M., Costa J.M., Conceição M.A.F., de Souza R.T., Vasconcellos M.A.S., Chaves M.M., 2016. Deficit irrigation in table grape: eco-physiological basis and potential use to save water and improve quality. Theor. Exp. Plant Physiol., 28, 85-108. [CrossRef] [Google Scholar]
  • Priori S., Barbetti R., L'Abate G., Bucelli P., Storchi P., Costantini E.A.C., 2014. Natural terroir units, Siena province, Tuscany. J. Maps, 10, 466-477. [CrossRef] [Google Scholar]
  • Renouf V., Tregoat O., Roby J.P., Van Leeuwen C., 2010. Soils, rootstocks and grapevine varieties in prestigious Bordeaux vineyards and their impact on yield and quality. J. Int. Sci. Vigne Vin, 44, 127-134. [Google Scholar]
  • Rivas-Martinez, S., Rivas-Saenz S., 2011. Worldwide bioclimatic classification system. Phytosociological Research Center, Spain, [Google Scholar]
  • Roderick M., Smith R., Lodwick G., 1996. Calibrating long-term AVHRR-derived NDVI imagery. Remote Sens. Environ., 58, 1-12. [CrossRef] [Google Scholar]
  • Sadras V.O., Moran M.A., 2013. Nonlinear effects of elevated temperature on grapevine phenology. Agric. For. Meteorol., 173, 107-115. [CrossRef] [Google Scholar]
  • Santos, J.A., Belo-Pereira, M., Fraga, H., Pinto, J.G., 2016. Understanding climate change projections for precipitation over western Europe with a weather typing approach. J. Geophys. Res. Atmos., 121, 1170-1189. [CrossRef] [Google Scholar]
  • Santos, J.A., Costa, R., Fraga, H., 2017. Climate change impacts on thermal growing conditions of main fruit species in Portugal. Clim. Change, 140, 273-286. [CrossRef] [Google Scholar]
  • Storchi, P., Costantini, E.A.C., Bucelli, P., 2005. The influence of climate and soil on viticultural and enological parameters of 'Sangiovese' grapevines under non-irrigated conditions. Acta Hortic., 689, 333-340. [CrossRef] [Google Scholar]
  • Taylor, J.A., 2004. Digital terroirs and precision viticulture: Investigations into the application of information technology in Australian vineyards. PhD Thesis. The University of Sydney., Sydney, Australia. [Google Scholar]
  • Tonietto, J., 1999. Les macroclimats viticoles mondiaux et l'infuence du mesoclimat sur la typicite de la Syrah et du Muscat de Hambourg dans le sud de la France: methodologie de caracterisation. PhD Dissertation, 233p, Ecole Nationale Superieure Agronomique, Montpellier, France. [Google Scholar]
  • Tonietto J., Carbonneau A., 2004. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol., 124, 81-97. [Google Scholar]
  • Tramontini S., van Leeuwen C., Domec J.C., Destrac-Irvine A., Basteau C., Vitali M., Mosbach-Schulz O., Lovisolo C., 2013. Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development. Pl. Soil, 368, 215-230. [CrossRef] [Google Scholar]
  • Usha K., Singh B., 2013. Potential applications of remote sensing in horticulture—A review. Sci. hort., 153, 71-83. [CrossRef] [Google Scholar]
  • van Leeuwen C., Friant P., Chone X., Tregoat O., Koundouras S., Dubordieu D., 2004. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic., 55, 207-217. [Google Scholar]
  • Webb L.B., Whetton P.H., Bhend J., Darbyshire R., Briggs P.R., Barlow E.W.R., 2012. Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat. Clim. Change, 2, 259-264. [CrossRef] [Google Scholar]
  • Winkler A.J., 1974. General viticulture. University of California Press, California, USA. [Google Scholar]
  • Yau I.H., Davenport J.R., Rupp, R.A., 2013. Characterizing inland Pacific Northwest American viticultural areas with geospatial data. Plos One, 8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.