Open Access
Issue |
Ciência Téc. Vitiv.
Volume 40, Number 1, 2025
|
|
---|---|---|
Page(s) | 63 - 77 | |
DOI | https://doi.org/10.1051/ctv/ctv2025400163 | |
Published online | 23 July 2025 |
- Acevedo-Opazo C., Ortega-Farias S., Fuentes S., 2010. Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agric. Water Manag., 97, 956–964. [Google Scholar]
- Allen R.G., 1996. Assessing Integrity of Weather Data for Reference Evapotranspiration Estimation. J. Irrig. Drain Eng., 122, 97–106. [Google Scholar]
- Allen R.G., Pereira L.S., Smith M., Raes D., 1998. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrig Drain Pap, 56, 300. [Google Scholar]
- Azorín P.R., García J.G., 2020. The productive, economic, and social efficiency of vineyards using combined drought-tolerant rootstocks and efficient lowwater volume deficit irrigation techniques under mediterranean semiarid conditions. Sustain 12, 1930. [Google Scholar]
- Baggiolini M., 1952. Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Revue romande d’Agriculture et d’Arboriculture, 8, 4–6 [Google Scholar]
- Balint G., Reynolds A.G., 2013. Effect of different irrigation strategies on vine physiology, yield, grape composition and sensory profile of Sauvignon blanc (Vitis vinifera L.) in a cool climate area. J Int des Sci la Vigne du Vin, 47, 159–181. [Google Scholar]
- Bellvert J., Mata M., Vallverdú X., Paris C., Marsal J., 2020. Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precis Agric, 22, 319–341. [Google Scholar]
- Bernáth S., Paulen O., Šiška B., Kus Z., František T., 2021. Influence of Climate Warming on Grapevine ( Vitis vinifera L .) Phenology in Conditions of Central Europe (Slovakia). Plants, 10, 1020. [Google Scholar]
- Bertamini M., Zulini L., Muthuchelian K., Nedunchezhian N., 2006. Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants. Photosynthetica, 44, 151–154. [Google Scholar]
- Blank M., Hofmann M., Stoll M., 2019. Seasonal differences in Vitis vinifera L. cv. Pinot noir fruit and wine quality in relation to climate. OENO One, 53 189–203. [Google Scholar]
- Bou Nader K., Stoll M., Rauhut D., Patz C.D., Jung R., Loehnertz O., Schultz H.R., Hilbert G., Renaud C., Roby J.P., 2019. Impact of grapevine age on water status and productivity of Vitis vinifera L. cv. Riesling. Eur J Agron, 104, 1–12. [Google Scholar]
- Branas J., Bernon G., Levadoux L., 1946. Eléments de viticulture générale. 400pp. École National d’Agriculture de Montpellier. [Google Scholar]
- Cancela J.J., Fandiño M., Rey B.J., Martínez E.M., 2015. Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía). Agric Water Manag, 151, 52–63. [Google Scholar]
- Cancela J.J., Trigo-Córdoba E., Martínez E.M., Rey B.J., Bouzas-Cid Y., Fandiño M., Mirás-Avalos J.M., 2016. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric Water Manag, 170, 99–109. [Google Scholar]
- Cardoso A.S., Alonso J., Rodrigues A.S., Araújo-Paredes C., Mendes S., Valín M.I., 2019. Agro-ecological terroir units in the North West Iberian Peninsula wine regions. Appl Geogr, 107, 51–62. [Google Scholar]
- Caruso G., Palai G., Tozzini L., D’Onofrio C., Gucci R., 2023. The role of LAI and leaf chlorophyll on NDVI estimated by UAV in grapevine canopies. Sci Hortic (Amsterdam), 322, 112398. [Google Scholar]
- Cataldo E., Salvi L., Sbraci S., Storchi P., Mattii G.B., 2020. Sustainable Viticulture: Effects of Soil Management in Vitis vinifera. Agronomy, 10, 1949. [CrossRef] [Google Scholar]
- Chacón-Vozmediano J.L., Martínez-Gascueña J., García-Navarro F.J., Jiménez-Ballesta R., 2020. Effects of water stress on vegetative growth and ‘merlot’ grapevine yield in a semi-arid mediterranean climate. Horticulturae, 6, 95. [Google Scholar]
- Choné X., Van Leeuwen C., Dubourdieu D., Gaudillère J.P., 2001. Stem water potential is a sensitive indicator of grapevine water status. Ann Bot, 87, 477–483. [Google Scholar]
- Chrysargyris A., Xylia P., Litskas V., Stavrinides M., Heyman L., Demeestere K., Höfte M., Tzortzakis N., 2020. Assessing the impact of drought stress and soil cultivation in chardonnay and xynisteri grape cultivars. Agronomy, 10, 670. [Google Scholar]
- Cole J., Pagay V., 2015. Usefulness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines (Vitis vinifera L.). Sci Hortic (Amsterdam), 191, 10–14. [Google Scholar]
- Cunha M., Richter C., 2012. Measuring the impact of temperature changes on the wine production in the Douro Region using the short time fourier transform. Int J Biometeorol, 56, 357–370. [Google Scholar]
- Cunha M., Richter C., Mario C., Christian R., 2020. Climate-induced cyclical properties of regional wine production using a time-frequency approach in douro and minho wine regions. Ciência Téc. Vitiv., 35, 16–29. [Google Scholar]
- Dinis L.T., Bernardo S., Yang C.Y., Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A., 2022. Mediterranean viticulture in the context of climate change. Ciência Téc. Vitiv., 37, 139–158. [CrossRef] [EDP Sciences] [Google Scholar]
- Er-Raki S., Bouras E., Rodriguez J.C., Watts C.J., Lizarraga-Celaya C., Chehbouni A., 2021. Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico. Agric Water Manag 245, 106585. [Google Scholar]
- Fandiño M., 2021. Necesidades de Agua e influencia de los sistemas de riego en vitis vinifera var. Albariño. 153 p. PhD Thesis, Escuela De Doctorado Internacional De La Universidad De Santiago De Compostela. [Google Scholar]
- Ferrer-Gallego R., Hernández-Hierro J.M., Rivas-Gonzalo J.C., Escribano-Bailón M.T., 2012. Influence of climatic conditions on the phenolic composition of Vitis vinifera L. cv. Graciano. Anal Chim Acta 732, 73–77. [Google Scholar]
- Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A., 2014. Climate factors driving wine production in the Portuguese Minho region. Agric For Meteorol 185, 26–36. [Google Scholar]
- Gil P.M., Saavedra J., Schaffer B., Navarro R., Fuentealba C., Minoletti F., 2014. Quantifying effects of irrigation and soil water content on electrical potentials in grapevines (Vitis vinifera) using multivariate statistical methods. Sci Hortic (Amsterdam), 173, 71–78. [Google Scholar]
- Girona J., Marsal J., Mata M., Del Campo J., Basile B., 2009. Phenological sensitivity of berry growth and composition of tempranillo grapevines (Vitis Vinifera L.) to water stress. Aust J Grape Wine Res 15, 268–277. [Google Scholar]
- Greer D.H., 2017. Responses of biomass accumulation, photosynthesis and the net carbon budget to high canopy temperatures of Vitis vinifera L. cv. Semillon vines grown in field conditions. Environ Exp Bot, 138, 10–20. [Google Scholar]
- Gupta A., Rico-Medina A., Caño-Delgado A.I., 2020. The physiology of plant responses to drought. Science, 368, 266–269. [Google Scholar]
- Huglin P., 1978. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus l’Académie d’Agriculture deFrance, 64, 1117–1126. [Google Scholar]
- Intrigliolo D.S., Castel J.R., 2009. Response of Vitis vinifera cv. “Tempranillo” to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality. Agric Water Manag, 96, 282–292. [Google Scholar]
- Junquera P., Lissarrague J.R., Jiménez L., Linares R., Baeza P., 2012. Long-term effects of different irrigation strategies on yield components, vine vigour, and grape composition in cv. Cabernet-Sauvignon (Vitis vinifera L.). Irrig Sci, 30, 351–361. [Google Scholar]
- Kizildeniz T., Mekni I., Santesteban H., Pascual I., Morales F., Irigoyen J.J., 2015. Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agric Water Manag, 159, 155–164. [Google Scholar]
- Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift, 15, 259–263. [Google Scholar]
- Leeuwen V., Tregoat O., Choné X., Bois B., Pernet D., Gaudillére J.P., 2009. Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes? J Int des Sci la Vigne du Vin 43, 121–134. [Google Scholar]
- Ma X., Han F., Wu J., Ma Y., Jacoby P.W., 2023. Optimizing crop water productivity and altering root distribution of Chardonnay grapevine (Vitis vinifera L.) in a silt loam soil through direct root-zone deficit irrigation. Agric Water Manag, 277, 108072. [Google Scholar]
- Martínez E.M., Rey B.J., Fandiño M., Cancela J.J., 2013. Comparison of two techniques for measuring leaf water potential in vitis vinifera var. Albariño. Ciência Téc. Vitiv., 28, 29–41. [Google Scholar]
- Miras-Avalos J.M., Araujo E.S., 2021. Optimization of vineyard water management: Challenges, strategies, and perspectives. Water (Switzerland), 13, 746. [Google Scholar]
- Mirás-Avalos J.M., Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I., 2016. Irrigation effects on the performance of grapevine (vitis vinifera L.) CV.. “albarino” under the humid climate of galicia. OENO One 50, 183–194. [Google Scholar]
- Morabito C., Orozco J., Tonel G., Cavalletto S., Meloni G.R., Schubert A., Gullino M.L., Zwieniecki M.A., Secchi F., 2022. Do the ends justify the means? Impact of drought progression rate on stress response and recovery in Vitis vinifera. Physiol Plant, 174, e13590. [Google Scholar]
- Munitz S., Netzer Y., Schwartz A., 2017. Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Aust J Grape Wine Res, 23, 87–94. [Google Scholar]
- Munitz S., Netzer Y., Shtein I., Schwartz A., 2018. Water availability dynamics have long-term effects on mature stem structure in Vitis vinifera. Am J Bot, 105, 1443–1452. [Google Scholar]
- Oliveira A.F., Mameli M.G., Pau L., Satta D., Nieddu G., 2013. Deficit irrigation strategies in vitis vinifera L. cv. cannonau under mediterranean climate. Part II - cluster microclimate and anthocyanin accumulation patterns. South African J Enol Vitic, 34, 184–195. [Google Scholar]
- Oliveira M., Cunha M., 2015. Study of the Portuguese populations of powdery mildew fungus from diverse grapevine cultivars (vitis vinifera). J Int des Sci la Vigne du Vin, 49, 173–182. [Google Scholar]
- Oliveira M.J.R.A., Castro S., Paltrinieri S., Bertaccini A., Sottomayor M., Santos C.S., Vasconcelos M.W., Carvalho S.M.P., 2020. “Flavescence dorée” impacts growth, productivity and ultrastructure of Vitis vinifera plants in Portuguese “Vinhos Verdes” region. Sci Hortic (Amsterdam), 261, 108742. [Google Scholar]
- Olivo N., Girona J., Marsal J., 2009. Seasonal sensitivity of stem water potential to vapour pressure deficit in grapevine. Irrig Sci, 27, 175–182. [Google Scholar]
- Paço T.A., Paredes P., Pereira L.S., Silvestre J., Santos F.L., 2019. Crop coefficients and transpiration of a super intensive Arbequina olive orchard using the dual Kc approach and the Kcb computation with the fraction of ground cover and height. Water (Switzerland) 11, 383. [Google Scholar]
- Paredes P., Rodrigues G.C., Cameira M. R., Torres M.O., Pereira L.S., 2017. Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation. Agric Water Manag, 179, 132–143. [Google Scholar]
- Parker A.K., García de Cortázar-Atauri I., Gény L., Spring J.L., Destrac A., Schultz H., Molitor D., Lacombe T., Graça A., Monamy C., 2020. Temperature-based grapevine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agric For Meteorol, 285–286, 107902. [Google Scholar]
- Pellegrino A., Lebon E., Voltz M., Wery J., 2005. Relationships between plant and soil water status in vine (Vitis vinifera L.). Plant Soil, 266:129–142. [Google Scholar]
- Phogat V., Skewes M.A., McCarthy M.G., Cox J.W., Šimůnek J., Petrie P.R., 2017. Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip. Agric Water Manag, 180, 22–34. [Google Scholar]
- Pou A., Gulías J., Moreno M., Tomás M., Medrano H., Cifre J., 2011. Cover cropping in Vitis vinifera L. cv. Manto Negro vineyards under Mediterranean conditions: Effects on plant vigour, yield and grape quality. J Int des Sci la Vigne du Vin, 45, 223–234. [Google Scholar]
- Prada J., Dinis L.T., Soriato E., Vandelle E., Soletkin O., Uysal Ş., Dihazi A., Santos C., Santos J.A., 2024. Climate change impact on Mediterranean viticultural regions and site-specific climate risk-reduction strategies. Springer Netherlands, 29, 52. [Google Scholar]
- Puig-Sirera À., Rallo G., Paredes P., Paço T.A., Minacapilli M., Provenzano G., Pereira L.S., 2021. Transpiration and water use of an irrigated traditional olive grove with sap-flow observations and the fao56 dual crop coefficient approach. Water (Switzerland), 13, 2466. [Google Scholar]
- Romero P., Botía P., Morote E., Navarro J.M., 2024. Optimizing deficit irrigation in Monastrell vines grafted on rootstocks of different vigour under semi-arid conditions. Agric Water Manag, 292, 108669. [Google Scholar]
- Romero P., García García J., Fernández-Fernández J.I., Muñoz R.G., Amor Saavedra F., Martínez-Cutillas A., 2016. Improving berry and wine quality attributes and vineyard economic efficiency by long-term deficit irrigation practices under semiarid conditions. Sci Hortic, 203, 69–85. [Google Scholar]
- Rosa R.D., Paredes P., Rodrigues G.C., Alves I., Fernando R.M., Pereira L.S., Allen R.G., 2012. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric Water Manag, 103, 8–24. [Google Scholar]
- Ruano-Rosa D., Sánchez-Hernández E., Baquero-Foz R., Martín-Ramos P., Martín-Gil J., Torres-Sánchez S., Casanova-Gascón J., 2022. Chitosan-Based Bioactive Formulations for the Control of Powdery Mildew in Viticulture. Agronomy, 12, 495. [Google Scholar]
- Santesteban L.G., Miranda C., Royo J.B., 2011. Suitability of pre-dawn and stem water potential as indicators of vineyard water status in cv. Tempranillo. Aust J Grape Wine Res, 17, 43–51. [Google Scholar]
- Santesteban L.G., Miranda C., Marín D., Sesma B., Intrigliolo D.S., Mirás-Avalos J.M., Escalona J.M., Montoro A., Herralde F., Baeza P., et al. 2019. Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.). Agric Water Manag, 221, 202–210. [Google Scholar]
- Schultz H.R., 2016. Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production. J Wine Econ, 11, 181–200. [Google Scholar]
- Seljaninov G.T., 1966. Agroclimatic Map of the World. Hydrometeoizdat Publishing House, Leningrad. [Google Scholar]
- Shellie K.C., 2014. Water productivity, yield, and berry composition in sustained versus regulated deficit irrigation of merlot grapevines. Am J Enol Vitic, 65, 197–205. [Google Scholar]
- Silva J.N., Ponciano N.J., Souza C.L.M., Souza P.M., Viana L. H., Silva M.G.M., 2021a. Economic viability of ‘Niágara Rosada’ grape production in the north and northwest regions of Rio de Janeiro. Rev Bras Frutic, 43, e-672. [Google Scholar]
- Silva S.P., Valín M.I., Mendes S., Araujo-Paredes C., Cancela J.J., 2021b. Dual crop coefficient approach in Vitis vinifera L. cv. Loureiro. Agronomy, 11, 2062. [Google Scholar]
- Silva S.P., Valín M.I., Mendes S., Araujo-Paredes C., Cancela J.J., 2024. Water productivity in Vitis vinifera L. cv. Alvarinho using dual crop coefficient approach. Agric Water Manag 303, 109027. [Google Scholar]
- Smith D.M., Scaife A.A., Eade R., Athanasiadis P., Bellucci A., Bethke I., Bilbao R., Borchert L.F., Caron L.P., Counillon F., 2020. North Atlantic climate far more predictable than models imply. Nature, 583, 796–800. [Google Scholar]
- Strack T., Stoll M., 2022. Soil water dynamics and drought stress response of Vitis vinifera L. in steep slope vineyard systems. Agric Water Manag, 274, 107967. [Google Scholar]
- Tonietto J., 1999. Les macroclimats viticoles mondiaux et l’influence du mésoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sud de la France: méthodologie de caráctérisation. 233 p. PhD Thesis. Ecole Nationale Superieure Agronomique De Montpellier. [Google Scholar]
- Trenti M., Lorenzi S., Bianchedi P.L., Grossi D., Failla O., Grando M.S., Emanuelli F., 2021. Candidate genes and SNPs associated with stomatal conductance under drought stress in Vitis. BMC Plant Biol, 21, 7. [Google Scholar]
- Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I., Avalos J.M., 2015. Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. “Godello” and “Treixadura” in Ribeiro, NW Spain. Agric Water Manag, 161, 20–30. [Google Scholar]
- Tuccio L., Lo Piccolo E., Battelli R., Matteoli S., Massai R., Scalabrelli G., Remorini D., 2019. Physiological indicators to assess water status in potted grapevine (Vitis vinifera L.). Sci Hortic (Amsterdam), 255, 8–13. [Google Scholar]
- Vélez S., Rubio J.A., Andrés M.I., Barajas E., 2019. Agronomic classification between vineyards ('Verdejo’) using NDVI and Sentinel-2 and evaluation of their wines. Vitis J Grapevine Res, 58, 33–38. [Google Scholar]
- Vilanova M., Rodríguez-Nogales J.M, Vila-Crespo J., Yuste J., 2019. Influence of water regime on yield components, must composition and wine volatile compounds of Vitis vinifera cv. Verdejo. Aust J Grape Wine Res, 25, 83–91. [Google Scholar]
- Wagner M., Stanbury P., Dietrich T., Döring J., Ewert J., Foerster C., Freund M., Friedel M., Kammann C., Koch M., 2023. Developing a Sustainability Vision for the Global Wine Industry. Sustain, 15, 10487. [Google Scholar]
- Williams L.E., Baeza P., 2007. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines. Am J Enol Vitic, 58, 173–181. [Google Scholar]
- Wilson T.G., Kustas W.P., Alfieri J.G., Anderson M.C., Gao F., Prueger J.H., McKee L.G., Alsina M.M., Sanchez L.A., Alstad K.P., 2020. Relationships between soil water content, evapotranspiration, and irrigation measurements in a California drip-irrigated Pinot noir vineyard. Agric Water Manag, 237, 106186. [Google Scholar]
- Winkler A.J., Cook J.A., Kliewer W.M., Lider L.A., 1974. General Viticulture. 710p. University of California Press, California. [Google Scholar]
- WRB., 2014. World Reference Base for Soil Resources. World Soil Resources Reports 106. [Google Scholar]
- Zamorano D., Franck N., Pastenes C., Wallberg B., Garrido M., Silva H., 2021. Improved physiological performance in grapevine (Vitis vinifera L.) cv. Cabernet Sauvignon facing recurrent drought stress. Aust J Grape Wine Res, 27, 258–268. [Google Scholar]
- Zia S., Spohrer K., Merkt N., Wenyong D., He X., Müller J., 2009. Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermography. Int J Agric Biol Eng, 2 :46–54. [Google Scholar]
- Zufferey V., Verdenal T., Dienes A., Belcher S., Lorenzini F., Koestel C., Blackford M., Bourdin G., Gindro K., Spangenberg J.E., 2020. The influence of vine water regime on the leaf gas exchange, berry composition and wine quality of Arvine grapes in Switzerland. OENO One, 54, 553–568. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.