Open Access
Ciência Téc. Vitiv.
Volume 39, Number 1, 2024
Page(s) 14 - 18
Published online 02 February 2024
  • Bertolino L.T., Caine R.S., Gray J.E, 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci., 10, 225. [CrossRef] [Google Scholar]
  • Bodor P., Szekszárdi A., Varga Z., Bálo B., 2019. Investigation of the stomata size and frequency of grapevine (Vitis vinifera L.) cultivar ‘Kékfrankos’. Columella, 6, 29–34. [CrossRef] [Google Scholar]
  • Boso S., Gago P., Alonso-Villaverde V., Santiago J.L., Martínez M.C., 2016. Density and size of stomata in the leaves of different hybrids (Vitis sp.) and Vitis vinifera varieties. Vitis, 55, 17–22. [Google Scholar]
  • Carson S., Gray J.E., 2008. Influence of environmental factors on stomatal development. New Phytol., 178, 9–23. [CrossRef] [PubMed] [Google Scholar]
  • Chaves, M.M., Costa, J.M., Zarrouk, O., Pinheiro, C., Lopes, C.M., Pereira, J.S., 2016. Controlling stomatal aperture in semi-arid regions – The dilemma of saving water or being cool? Plant Sci., 251, 54–64. [Google Scholar]
  • Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M., 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Ann. Bot., 105, 661–676, 2010. [CrossRef] [PubMed] [Google Scholar]
  • De la Fuente-Pañitur C., Valdés-Gómez H., Roudet J., Acevedo-Opazo C., Verdugo-Vásquez N., Araya-Alman M., Lolas M., Moreno Y., Fermaund M., 2018. Classification of winegrape cultivars in Chile and France according to their susceptibility to Botrytis cinerea related to fruit maturity. Aust. J. Grape Wine Res., 24, 145–157. [CrossRef] [Google Scholar]
  • Dittberner H., Korte A., Mettler-Altmann T., Weber A.P.M., Monroe G., de Meaux J., 2018. Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana. Mol. Ecol., 27, 4052–4065. [CrossRef] [PubMed] [Google Scholar]
  • Dow G.J., Bergmann D.C., 2014. Patterning and processes: how stomatal development defines physiological potential. Curr. Opin. Plant Biol., 21, 67–74. [CrossRef] [Google Scholar]
  • Franks P.J., Beerling D.J., 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci., 106, 10343–10347. [CrossRef] [PubMed] [Google Scholar]
  • Gerzon E., Biton I., Yaniv Y., Zemach, H., Netzer, Y., Schwartz, A., Fait, A., Ben-Ari, G., 2015. Grapevine Anatomy as a Possible Determinant of Isohydric or Anisohydric Behavior. Am. J. Enol. Vitic., 66, 340–347. [CrossRef] [Google Scholar]
  • Gutiérrez-Gamboa G., Pérez-Donoso A.G., Pou-Mir A., Acevedo-Opazo C., Valdés-Gómez H., 2019. Hydric behaviour and gas exchange in different grapevine varieties (Vitis vinifera L.) from the Maule Valley (Chile). S. Afr. J. Enol. Vitic., 40, 1–1. [Google Scholar]
  • Jones H.G., 2014. Drought and other abiotic stresses. In: Plants and microclimate: A quantitative approach to environmental plant physiology. 255–289. Jones H.G. (ed.), Cambridge University Press, Cambridge. [Google Scholar]
  • Lawson T., Blatt M.R., 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol., 164, 1556–1570. [Google Scholar]
  • Lawson T., Vialet-Chabrand S., 2019. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol., 221, 93–98. [CrossRef] [PubMed] [Google Scholar]
  • ODEPA Oficina de Estudios y Políticas Agrarias., 2022. Catastro vitícola nacional. Available at: (accessed on 22.05.2023). [Google Scholar]
  • Poni S., Bernizzoni F., Civardi S., 2007. Response of Sangiovese grapevines to partial rootzone drying: gas-exchange, growth and grape composition. Sci. Hortic., 114, 96–103. [CrossRef] [Google Scholar]
  • Pou A., Flexas J., Alsina M.M., Bota J., Carambula C., de Herralde F., Galmés J., Lovisolo C., Jiménez M., Ribas-Carbo M., Rusjan D., Secchi F., Tomàs M., Zsófi Z, Medrano H., 2008. Adjustments of water-use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). Physiol. Plantar., 134, 313–323. [CrossRef] [PubMed] [Google Scholar]
  • Rogiers S.Y., Greer D.H., Hutton R.J., Landsberg J.J., 2009. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar? J. Exp. Bot., 60, 3751–3763. [CrossRef] [PubMed] [Google Scholar]
  • Schultz H.R., 2003. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ., 26, 1393–1405. [Google Scholar]
  • Schultz H.R., Stoll M., 2010. Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust. J. Grape Wine Res., 16, 4–24. [CrossRef] [Google Scholar]
  • Serra I., Strever A., Myburgh P., Schmeisser M., Deloire P.A., 2017. Grapevine (Vitis vinifera L. ‘Pinotage’) leaf stomatal size and density as modulated by different rootstocks and scion water status. Acta Hortic., 157, 177–181. [CrossRef] [Google Scholar]
  • Sophie Y.D., Marron N., Barbra K., Reinhart C., 2008. Genetic Variation of Stomatal Traits and Carbon Isotope Discrimination in Two Hybrid Poplar Families (Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’). Ann. Bot., 102, 399–407. [CrossRef] [PubMed] [Google Scholar]
  • Teixeira G., Monteiro A., Santos, C., Lopes, C.M., 2018. Leaf morphoanatomy traits in white grapevine cultivars with distinct geographical origin. Ciência Téc. Vitiv., 33, 90–101. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tonietto J., Carbonneau A., 2004. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol., 124, 81–97. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.