Open Access
Issue |
Ciência Téc. Vitiv.
Volume 38, Number 1, 2023
|
|
---|---|---|
Page(s) | 10 - 20 | |
DOI | https://doi.org/10.1051/ctv/ctv20233801010 | |
Published online | 03 February 2023 |
- Abreu P.S., Terra M.F., Prado G., Santiago W.D., das Graças Cardoso M., Valeriano C., Batista L.R., 2016. Ochratoxin A in wines and evaluation of consumer exposure. Food Public. Health., 6, 107–114. [Google Scholar]
- Abrunhosa L., Inês A., Rodrigues A.I., Guimarães A., Pereira V.L., Parpot P., Mendes-Faia A., Venâncio A., 2014. Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. Int. J. Food Microbiol., 188, 45–52. [CrossRef] [Google Scholar]
- Alister C., Araya M., Morandé J.E., Volosky C., Torrico J.S., Cordova A., Kogan M., 2014. Effects of wine grape cultivar, application conditions and the winemaking process on the dissipation of six pesticides. Cienc. Investig. Agrar., 41, 375–386. [Google Scholar]
- Angioni A., Caboni P., Garau A., Farris A., Orro D., Budroni M., Cabras P., 2007. In vitro interaction between ochratoxin A and different strains of Saccharomyces cerevisiae and Kloeckera apiculata. J. Agric. Food Chem., 55, 2043–2048. [CrossRef] [PubMed] [Google Scholar]
- ANVISA, 2017. Resolução da diretoria colegiada - RDC nº 166, de 24 de julho de 2017 validação de métodos analíticos. Diário Oficial da União, 141. Available at: http://antigo.anvisa.gov.br/documents/10181/2721567/RDC_166_2017_COMP.pdf/d5fb92b3-6c6b-4130-8670-4e3263763401#:~:text=Objetivo-,Art.,objeto%20de%20an%C3%A1lise%20pela%20Anvisa (accessed on 02.09.2022). [Google Scholar]
- AOAC, 1995. Official Methods of Analysis of International. (16th ed.). AOAC International, Arlington. [Google Scholar]
- Bangar S.P., Sharma N., Kumar M., Ozogul F., Purewal S.S., Trif M., 2021. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Biosci., 44, 101444. [CrossRef] [Google Scholar]
- Barbosa S.C., Cerqueira M.B, Primel E.G., Furlong E.B., Kupski L., 2020. Validation of QuEChERS and GC-MS for pesticides determination in rice samples. Rev. Mundi Eng. Tecn. Gest., 5, 280–01, 280–16. [Google Scholar]
- Bejaoui H., Mathieu F., Taillandier P., Lebrihi A., 2006. Biodegradation of ochratoxin A by Aspergillus section Nigri species isolated from French grapes: a potential means of ochratoxin A decontamination in grape juices and musts. FEMS Microbiol. Lett., 255, 203–208. [CrossRef] [Google Scholar]
- Brasil, 2014. Decreto nº 8.198, de 20 de fevereiro de 2014. Regulamenta a Lei no 7.678, de 8 de novembro de 1988, que dispõe sobre a produção, circulação e comercialização do vinho e derivados da uva e do vinho. Diário Oficial da República Federativa do Brasil. Available at: https://www.gov.br/agricultura/ptbr/assuntos/inspecao/produtos-vegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/decreto-no-8-198-de-20-de-fevereiro-de-2014.pdf (accessed on 02.09.2022). [Google Scholar]
- Boeira C.Z., de Carvalho Silvello M.A., Remedi R.D., Feltrin A.C.P., Santos L.O., Garda-Buffon J., 2021. Mitigation of nivalenol using alcoholic fermentation and magnetic field application. Food Chem., 340, 127935. [CrossRef] [Google Scholar]
- Briz-Cid N., Castro-Sobrino L., Rial-Otero R., Cancho-Grande B., Simal-Gándara J., 2018. Fungicide residues affect the sensory properties and flavonoid composition of red wine. J. Food Compos. Anal., 66, 185–192. [CrossRef] [Google Scholar]
- Bus J.S., Hammond L.E., 2007. Regulatory progress, toxicology, and public concerns with 2,4-D: where do we stand after two decades? Crop Prot., 26, 266–269. [CrossRef] [Google Scholar]
- Cabral M.G., Viegas C.A., Teixeira M.C., Sa-Correia I., 2003. Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: role of pH and of growth phase and size of the yeast cell population. Chemosphere, 51, 47–54. [CrossRef] [PubMed] [Google Scholar]
- Caboni P., Cabras P., 2010. Pesticides' influence on wine fermentation. Adv. Food Nutr. Res., 59, 43–62. [CrossRef] [Google Scholar]
- Caldas S. S., Demoliner A., Primel E.G., 2009. Validation of a method using solid phase extraction and liquid chromatography for the determination of pesticide residues in groundwaters. J. Braz. Chem. Soc., 20, 125–132. [CrossRef] [Google Scholar]
- Čepo D.V., Pelajić M., Vrček I.V., Krivohlavek A., Žuntar I., Karoglan M., 2018. Differences in the levels of pesticides, metals, sulphites and ochratoxin A between organically and conventionally produced wines. Food Chem., 246, 394–403. [CrossRef] [Google Scholar]
- Costa C.L.D.A., Cerqueira M.B.R., Garda-Buffon J., 2019. Kresoxim-methyl and famoxadone as activators of toxigenic potential of Aspergillus carbonarius. Food Addit. Contam. - Chem. Anal. Control Expo. Risk Assess., 36, 1860–1870. [CrossRef] [PubMed] [Google Scholar]
- Csutorás C., Rácz L., Rácz K., Fűtő P., Forgó P., Kiss A., 2013. Monitoring of ochratoxin A during the fermentation of different wines by applying high toxin concentrations. Microchem. J., 107, 182–184. [CrossRef] [Google Scholar]
- Čuš F., Česnik H.B., Bolta Š.V., 2021. Pesticide residues, copper and biogenic amines in conventional and organic wines. Food Control, 132, 108534. [Google Scholar]
- Čuš F., Česnik H.B., Bolta Š.V., Gregorčič A., 2010a. Pesticide residues and microbiological quality of bottled wines. Food Control, 21, 150–154. [CrossRef] [Google Scholar]
- Čuš F., Česnik H.B., Bolta Š.V., Gregorčič A., 2010b. Pesticide residues in grapes and during vinification process. Food Control, 21, 1512–1518. [CrossRef] [Google Scholar]
- Doulia D.S., Anagnos E.K., Liapis K.S., Klimentzos D.A., 2016. Removal of pesticides from white and red wines by microfiltration. J. Hazard. Mater., 317, 135–146. [CrossRef] [Google Scholar]
- Doulia D.S., Anagnos E.K., Liapis K.S., Klimentzos D.A., 2017. Effect of clarification process on the removal of pesticide residues in white wine. Food Control, 72, 134–144. [CrossRef] [Google Scholar]
- EC, 2006. Commission Regulation No 401/2006 of 23 February 2006, laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Official Journal of European Communities L, 70/12. [Google Scholar]
- EC, 2019. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. SANTE/12682/2019. Available at: https://www.eurlpesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 02.09.2022). [Google Scholar]
- Esti M., Benucci I., Liburdi K., Acciaro G., 2012. Monitoring of ochratoxin A fate during alcoholic fermentation of winemust. Food Control, 27, 53–56. [CrossRef] [Google Scholar]
- FAO, 2001. FAO specifications and evaluations for plant protection products: procymidone. Evaluation report: 383/2001. Available at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/procymid.pdf (accessed on 02.09.2022). [Google Scholar]
- FAO, 2020. FAO specifications and evaluations for agricultural pesticides: 2,4-D (2,4-dichlorophenoxy)acetic acid. Evaluation report: 1/2020. Available at: http://www.fao.org/3/cb0999en/cb0999en.pdf (accessed on 02.09.2022). [Google Scholar]
- FAO/WHO, 2001. Ochratoxin A. In: Safety evaluation of certain mycotoxins in food, WHO food additives series 47. 281–387. World Health Organisation: Switzerland. [Google Scholar]
- Farbo M.G., Urgeghe P.P., Fiori S., Marceddu S., Jaoua S., Migheli Q., 2016. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads. Int. J. Food Microbiol., 217, 29–34. [CrossRef] [Google Scholar]
- Felsot A.S., Unsworth J.B., Linders J.B., Roberts G., Rautman D., Harris C., Carazo E., 2010. Agrochemical spray drift; assessment and mitigation—A review J. Environ. Sci. Health - B Pestic. Food Agric. Contam. Wastes., 46, 1–23. [CrossRef] [Google Scholar]
- Fernandes P.J., Barros N., Câmara J.S., 2013. A survey of the occurrence of ochratoxin A in Madeira wines based on a modified QuEChERS extraction procedure combined with liquid chromatography–triple quadrupole tandem mass spectrometry. Food Res. Int., 54, 293–301. [CrossRef] [Google Scholar]
- Freire L., Braga P.A., Furtado M.M., Delafiori J., Dias-Audibert F.L., Pereira G.E., Reyes F.G., Catharino R.R., Sant’ana A.S., 2020. From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control, 113, 107167. [CrossRef] [Google Scholar]
- Freire L., Furtado M.M., Guerreiro T.M., Da Graça J.S., Da Silva B.S., Oliveira D. N., Catharino R.R., Sant’ana A.S., 2019. The presence of ochratoxin A does not influence Saccharomyces cerevisiae growth kinetics but leads to the formation of modified ochratoxins. Food Chem. Toxicol., 133, 110756. [CrossRef] [Google Scholar]
- Freire L., Passamani F.R.F., Thomas A.B., Nassur R.D.C.M.R., Silva L.M., Paschoal F.N., Pereira G.E., Prado G., Batista L.R., 2017. Influence of physical and chemical characteristics of wine grapes on the incidence of Penicillium and Aspergillus fungi in grapes and ochratoxin A in wines. Int. J. Food Microbiol., 241, 181–190. [CrossRef] [Google Scholar]
- Gabrielyan A., Kazumyan K., 2018. The investigation of phenolic compounds and anthocyanins of wines made of the grape variety karmrahyut. Ann. Agrar. Sci., 16, 160–162. [CrossRef] [Google Scholar]
- Garcia S.O., Sibaja K.V.M., Nogueira W.V., Feltrin A.C.P., Pinheiro D.F.A., Cerqueira M.B.R., Furlong E.B., Garda-Buffon J., 2020. Peroxidase as a simultaneous degradation agent of ochratoxin A and zearalenone applied to model solution and beer. Food Res. Int., 131, 109039. [CrossRef] [Google Scholar]
- Gil-Serna J., Vázquez C., González-Jaén M., Patiño B., 2018. Wine contamination with ochratoxins: A Review. Beverages, 4, 6. [CrossRef] [Google Scholar]
- Giovinazzo G., Grieco F., 2015. Functional properties of grape and wine polyphenols. Plant Foods Hum. Nutr., 70, 454–462. [CrossRef] [PubMed] [Google Scholar]
- González-Álvarez M., González-Barreiro C., Cancho-Grande B., Simal-Gándara J., 2012. Impact of phytosanitary treatments with fungicides (cyazofamid, famoxadone, mandipropamid and valifenalate) on aroma compounds of Godello white wines. Food Chem., 131, 826–836. [CrossRef] [Google Scholar]
- González-Rodríguez R.M., Cancho-Grande B., Torrado-Agrasar A., Simal-Gándara J., Mazaira-Pérez J., 2009. Evolution of tebuconazole residues through the winemaking process of Mencía grapes. Food Chem., 117, 529–537. [CrossRef] [Google Scholar]
- Gowman A.C., Picard M.C., Rodriguez-Uribe A., Misra M., Khalil H., Thimmanagari M., Mohanty A.K., 2019. Physicochemical analysis of apple and grape pomaces. Bioresources, 14, 3210–3230. [CrossRef] [Google Scholar]
- Hammer Ø., Harper D.A., Ryan P.D., 2001. PAST, 2.04, Palaeontologia electronica, Norway. [Google Scholar]
- Hou X., Xu Z., Zhao Y., Liu D., 2020. Rapid analysis and residue evaluation of six fungicides in grape wine-making and drying. J. Food Compos. Anal., 89, 103465. [CrossRef] [Google Scholar]
- IARC, 1993. Agents Classified by the IARC Monographs, Volumes 1-119. List of Classifications. Ochratoxin A, CAS No. 303-47-9. Available at: https://monographs.iarc.who.int/list-of-classifications (accessed on 02.09.2022). [Google Scholar]
- IARC, 2018. Agents Classified by the IARC Monographs, Volumes 1–119. List of Classifications. 2,4-dichlorophenoxyacetic acid, CAS. No 94-75-7. Available at: https://monographs.iarc.who.int/list-of-classifications (accessed on 02.09.2022). [Google Scholar]
- IBRAVIN, 2019. Ministério Público recebe novo pedido de suspensão do herbicida 2,4-D no RS, GZH: Brazil. Available at: https://gauchazh.clicrbs.com.br/economia/campo-elavoura/noticia/2019/11/mp-recebe-novo-pedido-desuspensao-do-herbicida-24-d-no-rsck2qouch100pp01o0g360uxp0.html (accessed on 02.09.2022). [Google Scholar]
- Jiang Y., Simonsen J., Zhao Y., 2011. Compression‐molded biocomposite boards from red and white wine grape pomaces. J. Appl. Polym. Sci., 119, 2834–2846. [CrossRef] [Google Scholar]
- JMPR, 2006. Updating, the principles and methods of risk assessment MRLS for pesticides and veterinary drugs. Available at: http://www.fao.org/3/al932e/al932e.pdf (accessed on 02.09.2022). [Google Scholar]
- Kochman J., Jakubczyk K., Janda K., 2021. Mycotoxins in red wine: Occurrence and risk assessment. Food Control, 129, 108229. [CrossRef] [Google Scholar]
- Kumar P., Mahato D.K., Sharma B., Borah R., Haque S., Mahmud M.C., Shah A.K., Rawal D., Bora H., Bui S., 2020. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon, 187, 151–162. [CrossRef] [Google Scholar]
- Lewis K., Tzilivakis J., Green A., Warner D., 2006. Pesticide Properties DataBase (PPDB). Available at: http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm (accessed on 02.09.2022). [Google Scholar]
- Magistà D., Cozzi G., Gambacorta L., Logrieco A.F., Solfrizzo M., Perrone G., 2021. Studies on the efficacy of electrolysed oxidising water to control Aspergillus carbonarius and ochratoxin A contamination on grape. Int. J. Food Microbiol., 338, 108996. [CrossRef] [Google Scholar]
- Manjarres-López D.P., Andrades M.S., Sánchez-González S., Rodríguez-Cruz M.S., Sánchez-Martín M.J., Herrero-Hernández E., 2021. Assessment of pesticide residues in waters and soils of a vineyard region and its temporal evolution. Environ. Pollut., 284, 117463. [CrossRef] [Google Scholar]
- Meca G., Blaiotta G., Ritieni A., 2010. Reduction of ochratoxin A during the fermentation of Italian red wine Moscato. Food Control, 21, 579–583. [CrossRef] [Google Scholar]
- Medina Á., Mateo R., Valle-Algarra F.M., Mateo E M., Jiménez M., 2007. Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonarius isolated from grapes. Int. J. Food Microbiol., 119, 230–235. [CrossRef] [Google Scholar]
- Mello L.M.R., Machado C.A.E., 2021. Vitivinicultura brasileira: Panorama 2020. Comunicado Técnico - 223 da Embrapa Uva e Vinho, Bento Gonçalves, RS. Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/227610/1/ComTec-223-21.pdf (accessed on 02.09.2022). [Google Scholar]
- Munro I.C., Carlo G.L., Orr J.C., Sund K.G., Wilson R.M., Kennepohl E., Lynch B.S., Jablinske M., 1992. A comprehensive, integrated review and evaluation of the scientific evidence relating to the safety of the herbicide 2,4-D. J. Am. Coll. Toxicol., 11, 559–664. [CrossRef] [Google Scholar]
- Ndukwe J.K., Aliyu G.O., Onwosi C.O., Chukwu K.O., Ezugworie F.N., 2020. Mechanisms of weak acid-induced stress tolerance in yeasts: Prospects for improved bioethanol production from lignocellulosic biomass. Process Biochem., 90, 118–130. [CrossRef] [Google Scholar]
- OIV, 2021. World wine production outlook. OIV first estimates. Available at: https://www.oiv.int/public/medias/8726/en-oiv-2021-worldwine-production-first-estimates.pdf (accessed on 02.09.2022). [Google Scholar]
- Oliva J., Martínez-Gil A.M., Lorenzo C., Cámara M.A., Salinas M.R., Barba A., Garde-Cerdán T., 2015. Influence of the use of fungicides on the volatile composition of Monastrell red wines obtained from inoculated fermentation. Food Chem., 170, 401–406. [CrossRef] [Google Scholar]
- Pan X., Dong F., Liu N., Cheng Y., Xu J., Liu X., Wu X., Chen Z., Zheng Y., 2018. The fate and enantioselective behavior of zoxamide during wine-making process. Food Chem., 248, 14–20. [CrossRef] [Google Scholar]
- Payá P., Anastassiades M., Mack D., Sigalova I., Tasdelen B., Oliva J., Barba A., 2007. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem., 389, 1697–1714. [CrossRef] [PubMed] [Google Scholar]
- Petruzzi L., Corbo M.R., Baiano A., Beneduce L., Sinigaglia M., Bevilacqua A., 2015. In vivo stability of the complex Ochratoxin A–Saccharomyces cerevisiae starter strains. Food Control, 50, 516–520. [CrossRef] [Google Scholar]
- Petruzzi L., Corbo M.R., Sinigaglia M., Bevilacqua A., 2014. Yeast cells as adsorbing tools to remove ochratoxin A in a model wine. Int. J. Food Sc. Technol., 49, 936–940. [CrossRef] [Google Scholar]
- Pichon V., Charpak M., Hennion M.C., 1998. Multiresidue analysis of pesticides using new laminar extraction disks and liquid chromatography and application to the French priority list. J. Chromatogr. A., 795, 83–92. [CrossRef] [Google Scholar]
- Remiro R., Irigoyen A., González-Peñas E., Lizarraga E., de Cerain A.L., 2013. Levels of ochratoxins in Mediterranean red wines. Food Control, 32, 63–68. [CrossRef] [Google Scholar]
- Rifai A., Souissi Y., Genty C., Clavaguera C., Bourcier S., Jaber F., Bouchonnet S., 2013. Ultraviolet degradation of procymidone–structural characterization by gas chromatography coupled with mass spectrometry and potential toxicity of photoproducts using in silico tests. Rapid Commun. Mass Spectrom., 27, 1505–1516. [CrossRef] [Google Scholar]
- Romanazzi G., Feliziani E., 2014. Botrytis cinerea (Gray Mold). In: Postharvest decay: Control Strategies. 131–146. Bautista-Baños, S. (ed.), Academic Press, London. [Google Scholar]
- Rossouw G.C., Holzapfel B.P., Rogiers S.Y., Gouot J.C., Schmidtke L.M., 2019. Repercussions of four herbicides on reproductive and vegetative development in potted grapevines. Aust. J. Grape Wine Res., 25, 316–326. [CrossRef] [Google Scholar]
- Schusterova D., Hajslova J., Kocourek V., Pulkrabova J., 2021. Pesticide residues and their metabolites in grapes and wines from conventional and organic farming system. Foods, 10, 307. [CrossRef] [PubMed] [Google Scholar]
- Tempère S., Marchal A., Barbe J.C., Bely M., Masneuf-Pomarede I., Marullo P., Albertin W., 2018. The complexity of wine: Clarifying the role of microorganisms. Appl. Microbial. Biotechnol., 102, 3995–4007. [Google Scholar]
- Tıraş Z.Ş.E., Okur H.H., Günay Z., Yıldırım H.K., 2022. Different approaches to enhance resveratrol content in wine. Ciência Téc. Vitiv., 37, 13–28. [Google Scholar]
- Torović L., Lakatoš I., Majkić T., Beara I., 2020. Risk to public health related to the presence of ochratoxin A in wines from Fruška Gora. LWT, 129, 109537. [CrossRef] [Google Scholar]
- Ulrih N.P., Skrt M., Košmerl T., Wondra M., Abram V., 2020. Part I. Polyphenols composition and antioxidant potential during ‘Blaufränkisch’ grape maceration and red wine maturation, and the effects of trans-resveratrol addition. Food Chem. Toxicol., 137, 111122. [CrossRef] [Google Scholar]
- Yoon J.Y., Kim J.E., Song H.J., Oh K.B., Jo J.W., Yang Y.H., Lee S.H., Kang G., Kim H.J., Choi Y.K., 2021. Assessment of adsorptive behaviors and properties of grape pomacederived biochar as adsorbent for removal of cymoxanil pesticide. Environ. Technol. Innov., 21, 101242. [CrossRef] [Google Scholar]
- Yousefi M., Khorshidian N., Mortazavian A.M., 2021. Detoxification properties of microorganisms in foods. In: Microbial Biotechnology in Food and Health. 81–112. Academic Press, India. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.