Open Access
Review
Issue
Ciência Téc. Vitiv.
Volume 36, Number 1, 2021
Page(s) 9 - 21
DOI https://doi.org/10.1051/ctv/20213601009
Published online 15 March 2021
  • Adhikari S., Adhikari A., Weaver D.K., Bekkerman A., Menalled F.D., 2019. Impacts of agricultural management systems on biodiversity and ecosystem services in highly simplified dryland landscapes. Sustainability, 11, 3223. [Google Scholar]
  • Ale M.T., Mikkelsen J.D., Meyer A.S., 2012. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp. J. Appl. Phycol., 24, 715–723. [Google Scholar]
  • Arioli T., Mattner S.W., Winberg P.C., 2015. Applications of seaweed extracts in Australian agriculture: past, present and future. J. Appl. Phycol., 27, 2007–2015. [PubMed] [Google Scholar]
  • Audibert L., Fauchon M., Blanc N., Hauchard D., Ar Gall E., 2010. Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical-scavenging activities. Phytochem. Anal., 21, 399–405. [PubMed] [Google Scholar]
  • Aziz A., Poinssot B., Daire X., Adrian M., Bézier A., Lambert B., Joubert J.M., Pugin A., 2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact., 16, 1118–1128. [Google Scholar]
  • Balboa E.M., Conde E., Moure A., Falqué E., Domínguez H., 2013. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem., 138, 1764–1785. [PubMed] [Google Scholar]
  • Banerjee S., Walder F., Büchi L., Meyer M., Held A.Y., Gattinger A., Keller T., Charles R., van der Heijden M.G.A., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J., 13, 1722–1736. [Google Scholar]
  • Battacharyya D., Babgohari M.Z., Rathor P., Prithiviraj B., 2015. Seaweed extracts as biostimulants in horticulture. Sci. Hortic., 196, 39–48. [Google Scholar]
  • Bigeard J., Colcombet J., Hirt H., 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant., 8, 521–539. [PubMed] [Google Scholar]
  • Blunden G., Morse P.F., Mathe I., Hohmann J., Critchley A.T., Morrell S., 2010. Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture. Nat. Prod. Commun., 5, 581–585. [Google Scholar]
  • Briceño-Domínguez D., Hernández-Carmona G., Moyo M., Stirk W., van Staden J., 2014. Plant growth promoting activity of seaweed liquid extracts produced from Macrocystis pyrifera under different pH and temperature conditions. J. Appl. Phycol., 26, 2203–2210. [Google Scholar]
  • Cheng X., Liang Y., Zhang A., Wang P., He S., Zhang K., Wang J., Fang Y., Sun X., 2020. Using foliar nitrogen application during veraison to improve the flavor components of grape and wine. J. Sci. Food Agric. (in press). [Google Scholar]
  • Chizhov A.O., Dell A., Morris H.R., Haslam S.M., McDowell R.A., Shashkov A.S., Nifant’ev N.E., Khatuntseva E.A., Usov A.I., 1999. A study of fucoidan from the brown seaweed Chorda filum. Carbohydr. Res., 320, 108–119. [PubMed] [Google Scholar]
  • Craigie J.S., 2011. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol., 23, 371–393. [Google Scholar]
  • Cunha L., Grenha A., 2016. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs., 14, 42. [Google Scholar]
  • Delaunois B., Farace G., Jeandet P., Clément C., Baillieul F., Dorey S., Cordelier S., 2014. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ. Sci. Pollut. Res., 21, 4837–4846. [Google Scholar]
  • Dienes-Nagy Á., Marti G., Breant L., Lorenzini F., Fuchsmann P., Baumgartner D., Zufferey V., Spring J.-L., Gindro K., Viret O., Wolfender J.-L., Rösti J., 2020. Identification of putative chemical markers in white wine (Chasselas) related to nitrogen deficiencies in vineyards. OENO One, 54, 583–599. [Google Scholar]
  • Echeverría G., Ferrer M., Mirás-Avalos J., 2017. Quantifying the relative impact of physical and human factors on the viticultural expression of terroir. Int. J. Environ. Agric. Res., 3, 12–25. [Google Scholar]
  • El Boukhari M.E.M., Barakate M., Bouhia Y., Lyamlouli K., 2020. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants, 9, 359. [Google Scholar]
  • Fernández V., Bahamonde H.A., Peguero-Pina J.J., Gil-Pelegrín E., Sancho-Knapik D., Gil L., Goldbach H.E., Eichert T., 2017. Physico-chemical properties of plant cuticles and their functional and ecological significance. J. Exp. Bot., 68, 5293–5306. [PubMed] [Google Scholar]
  • Fernández V., Eichert T., 2009. Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. CRC. Crit. Rev. Plant Sci., 28, 36–68. [Google Scholar]
  • Fernández V., Guzmán-Delgado P., Graça J., Santos S., Gil L., 2016. Cuticle structure in relation to chemical composition: Reassessing the prevailing model. Front. Plant Sci., 7, 427. [PubMed] [Google Scholar]
  • Fernández V., Sancho-Knapik D., Guzmán P., Peguero-Pina J.J., Gil L., Karabourniotis G., Khayet M., Fasseas C., Heredia-Guerrero J.A., Heredia A., Gil-Pelegrín E., 2014. Wettability, polarity, and water absorption of holm oak leaves: Effect of leaf side and age. Plant Physiol., 166, 168–180. [Google Scholar]
  • Fernández V., Sotiropoulos T., Brown P., 2013. Foliar fertilization scientific principles and field practices. 140 p. International Fertilizer Industry Association (IFA), Paris. [Google Scholar]
  • Fleurence J., 1999. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol., 10, 25–28. [Google Scholar]
  • Fleurence J., 2004. Seaweed proteins. In: Food Science, Technology and Nutrition. 197-213. Yada R.Y. (ed.), Woodhead Publishing Series in Food Science, Technology and Nutrition, Elsevier, Amsterdam. [Google Scholar]
  • Flórez-Fernández N., Torres M.D., González-Muñoz M.J., Domínguez H., 2018. Potential of intensification techniques for the extraction and depolymerization of fucoidan. Algal Res., 30, 128–148. [Google Scholar]
  • Fries N., 1979. Physiological characteristics of Mycosphaerella ascophylli, a fungal endophyte of the marine brown alga Ascophyllum nodosum. Physiol. Plant., 45, 117–121. [Google Scholar]
  • Fries N., Thorén-Tolling K., 1978. Identity of the fungal endophyte of Ascophyllum wth Mycosphaerella ascophylli established by means of fluorescent antibody technique. Bot. Mar., 21, 409–412. [Google Scholar]
  • Frioni T., Sabbatini P., Tombesi S., Norrie J., Poni S., Gatti M., Palliotti A., 2018. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic., 232, 97–106. [Google Scholar]
  • Frioni T., Tombesi S., Quaglia M., Calderini O., Moretti C., Poni S., Gatti M., Moncalvo A., Sabbatini P., Berrìos J.G., Palliotti A., 2019. Metabolic and transcriptional changes associated with the use of Ascophyllum nodosum extracts as tools to improve the quality of wine grapes (Vitis vinifera cv. Sangiovese) and their tolerance to biotic stress. J. Sci. Food Agric., 99, 6350–6363. [PubMed] [Google Scholar]
  • Ganesan P., Kumar C.S., Bhaskar N., 2008. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresour. Technol., 99, 2717–2723. [Google Scholar]
  • Garbary D.J., Gautam A., 1989. The Ascophyllum, Polysiphonia, Mycosphaerella symbiosis I. Population ecology of Mycosphaerella from Nova Scotia. Bot. Mar., 32, 181–186. [Google Scholar]
  • Garde-Cerdán T., Mancini V., Carrasco-Quiroz M., Servili A., Gutiérrez-Gamboa G., Foglia R., Pérez-Álvarez E.P., Romanazzi G., 2017. Chitosan and laminarin as alternatives to copper for Plasmopara viticola control: Effect on grape amino acid. J. Agric. Food Chem., 65, 7379–7386. [PubMed] [Google Scholar]
  • Gauthier A., Trouvelot S., Kelloniemi J., Frettinger P., Wendehenne D., Daire X., Joubert J.-M., Ferrarini A., Delledonne M., Flors V., Poinssot B., 2014. The sulfated laminarin triggers a stress transcriptome before priming the SAand ROS-dependent defenses during grapevine’s induced resistance against Plasmopara viticola. PLoS One, 9, e88145. [Google Scholar]
  • Godlewska K., Michalak I., Tuhy Ł., Chojnacka K., 2016. Plant growth biostimulants based on different methods of seaweed extraction with water. Biomed Res. Int., 5973760. [Google Scholar]
  • Gutiérrez-Gamboa G., 2020. Aplicación foliar en el viñedo de un extracto del alga Ascophyllum nodosum como herramienta para mejorar la composición nitrogenada, fenólica y aromática de la uva y del vino de las variedades Tempranillo y Tempranillo Blanco. 197 p. PhD Thesis, Universidad de La Rioja. [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Carrasco-Quiroz M., Martínez-Gil A.M., Moreno-Simunovic Y., 2018. Improvement of wine volatile composition through foliar nitrogen applications to “Cabernet Sauvignon” grapevines in a warm climate. Chil. J. Agric. Res., 78, 216–227. [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Gonzalo-Diago A., Moreno-Simunovic Y., Martínez-Gil A.M., 2017a. Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard. LWT - Food Sci. Technol., 75, 147–154. [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Portu J., Moreno-Simunovic Y., Martínez-Gil A.M., 2017b. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content. Food Res. Int., 96, 46–53. [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Rubio-Bretón P., PérezÁlvarez E.P., 2020a. Study of must and wine amino acids composition after seaweed applications to Tempranillo blanco grapevines. Food Chem., 308, 125605. [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Rubio-Bretón P., PérezÁlvarez E.P., 2020b. Seaweed foliar applications at two dosages to Tempranillo blanco (Vitis vinifera L.) grapevines in two seasons: Effects on grape and wine volatile composition. Food Res. Int., 130, 108918. [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Rubio-Bretón P., PérezÁlvarez E.P., 2020c. Biostimulation to Tempranillo grapevines (Vitis vinifera L.) through a brown seaweed during two seasons: Effects on grape juice and wine nitrogen compounds. Sci. Hortic., 264, 109177. [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Souza-Da Costa B., Moreno-Simunovic Y., 2019a. Strategies for the improvement of fruit set in Vitis vinifera L. cv. ‘Carménère’ through different foliar biostimulants in two different locations. Ciência Téc. Vitiv., 33, 177–183. [Google Scholar]
  • Gutiérrez-Gamboa G., Portu J., Santamaría P., López R., Garde-Cerdán T., 2017c. Effects on grape amino acid concentration through foliar application of three different elicitors. Food Res. Int., 99, 688–692. [Google Scholar]
  • Gutiérrez-Gamboa G., Verdugo-Vásquez N., Díaz-Gálvez I., 2019b. Influence of type of management and climatic conditions on productive behavior, oenological potential, and soil characteristics of a ‘Cabernet Sauvignon’ vineyard. Agronomy, 9, 64. [Google Scholar]
  • Hammond-Kosack K.E., Jones J.D.G., 1996. Resistance genedependent plant defense responses. Plant Cell, 8, 1773–1791. [Google Scholar]
  • Hannah L., Roehrdanz P.R., Ikegami M., Shepard A.V., Shaw M.R., Tabor G., Zhi L., Marquet P.A., Hijmans R.J., 2013. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. U. S. A., 110, 6907–6912. [PubMed] [Google Scholar]
  • Howarth R.W., 2008. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae, 8, 14–20. [Google Scholar]
  • Jeong S.T., Goto-Yamamoto N., Kobayashi S., Esaka M., 2004. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci., 167, 247–252. [Google Scholar]
  • Jones G.V., Davis R.E., 2000. Climate Influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic., 51, 249–261. [Google Scholar]
  • Kadam S.U., Tiwari B.K., O’Connell S., O’Donnell C.P., 2015a. Effect of ultrasound pretreatment on the extraction kinetics of bioactives from brown seaweed (Ascophyllum nodosum). Sep. Sci. Technol., 50, 670–675. [Google Scholar]
  • Kadam S.U., Tiwari B.K., Smyth T.J., O’Donnell C.P., 2015b. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem., 23, 308–316. [Google Scholar]
  • Keller M., 2020. The science of grapevines. Anatomy and physiology. 554 p. Academic Press, Cambridge. [Google Scholar]
  • Keyrouz R., Abasq M.L., Bourvellec C. Le, Blanc N., Audibert L., Argall E., Hauchard D., 2011. Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chem., 126, 831–836. [Google Scholar]
  • Khan A.S., Ahmad B., Jaskani M.J., Ahmad R., Malik A.U., 2012. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol., 14, 383–388. [Google Scholar]
  • Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A.T., Craigie J.S., Norrie J., Prithiviraj B., 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul., 28, 386–399. [Google Scholar]
  • Kirkwood R.C., 1999. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic. Sci., 55, 69–77. [Google Scholar]
  • Klarzynski O., Plesse B., Joubert J.M., Yvin J.C., Kopp M., Kloareg B., Fritig B., 2000. Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol., 124, 1027–1037. [Google Scholar]
  • Konlechner C., Sauer U., 2016. Ultrastructural leaf features of grapevine cultivars (Vitis vinifera L. ssp. vinifera). Oeno One, 50, 195–207. [Google Scholar]
  • Lacroux F., Tregoat O., Van Leeuwen C., Pons A., Tominaga T., Lavigne-Cruège V., Dubourdieu D., 2008. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc. J. Int. des Sci. la Vigne du Vin, 42, 125–132. [Google Scholar]
  • Lasa B., Menendez S., Sagastizabal K., Cervantes M.E.C., Irigoyen I., Muro J., Aparicio-Tejo P.M., Ariz I., 2012. Foliar application of urea to “Sauvignon Blanc” and “Merlot” vines: Doses and time of application. Plant Growth Regul., 67, 73–81. [Google Scholar]
  • Leece D., 1976. Composition and ultrastructure of leaf cuticles from fruit trees, relative to differential foliar absorption. Funct. Plant Biol., 3, 833. [Google Scholar]
  • Lemaître-Guillier C., Hovasse A., Schaeffer-Reiss C., Recorbet G., Poinssot B., Trouvelot S., Daire X., Adrian M., Héloir M.C., 2017. Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew. J. Proteomics, 156, 113–125. [PubMed] [Google Scholar]
  • Liu P.L., Du, L., Huang Y., Gao S.M., Yu M., 2017. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol. Biol., 17, 1–16. [PubMed] [Google Scholar]
  • MacKinnon S.L., Hiltz D., Ugarte R., Craft C.A., 2010. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. J. Appl. Phycol., 22, 489–494. [Google Scholar]
  • Malik N.A.A., Kumar I.S., Nadarajah K., 2020. Elicitor and receptor molecules: Orchestrators of plant defense and immunity. Int. J. Mol. Sci., 21, 963. [Google Scholar]
  • Marone D., Russo M., Laidò G., De Leonardis A., Mastrangelo A., 2013. Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses. Int. J. Mol. Sci., 14, 7302–7326. [Google Scholar]
  • Ménard R., Alban S., De Ruffray P., Jamois F., Franz G., Fritig B., Yvin J.C., Kauffmann S., 2004. β-1,3 glucan sulfate, but not β-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell, 16, 3020–3032. [Google Scholar]
  • Mercier L., Lafitte C., Borderies G., Briand X., Esquerré-Tugayé M.T., Fournier J., 2001. The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol., 149, 43–51. [Google Scholar]
  • Mondello V., Larignon P., Armengol J., Kortekamp A., Vaczy K., Prezman F., Serrano E., Rego C., Mugnai L., Fontaine F., 2018. Management of grapevine trunk diseases: Knowledge transfer, current strategies and innovative strategies adopted in Europe. Phytopathol. Mediterr., 57, 369–383. [Google Scholar]
  • Nagahama T., Fujimoto K., Takami S., Kinugawa A., Narusuye K., 2009. Effective amino acid composition of seaweeds inducing food preference behaviors in Aplysia kurodai. Neurosci. Res., 64, 243–250. [PubMed] [Google Scholar]
  • Nakamura T., Nagayama K., Uchida K., Tanaka R., 1996. Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis Fish. Sci., 62, 923–926. [Google Scholar]
  • Neset T.S., Wiréhn L., Klein N., Käyhkö J., Juhola S., 2019. Maladaptation in Nordic agriculture. Clim. Risk Manag., 23, 78–87. [Google Scholar]
  • Nesler A., Perazzolli M., Puopolo G., Giovannini O., Elad Y., Pertot I., 2015. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions. Front. Plant Sci., 6, 715. [PubMed] [Google Scholar]
  • Ngatia L., M. Grace III J., Moriasi D., Taylor R., 2019. Nitrogen and phosphorus eutrophication in marine ecosystems. In: Monitoring of Marine Pollution. 1-17. Fouzia H.B. (ed.), IntechOpen, London. [Google Scholar]
  • Nobel P.S., 2009. Physicochemical and Environmental Plant Physiology. 676 p. Elsevier, Amsterdam. [Google Scholar]
  • Norms R.F., Bukovac M.J., 1968. Structure of the pear leaf cuticle with special reference to cuticular penetration. Am. J. Bot., 55, 975–983. [Google Scholar]
  • Norrie J., Branson T., Keathley P.E., 2002. Marine plant extracts impact on grape yield and quality. Acta Hortic., 594, 315–319. [Google Scholar]
  • Okolie C.L., Mason B., Mohan A., Pitts N., Udenigwe C.C., 2019. The comparative influence of novel extraction technologies on in vitro prebiotic-inducing chemical properties of fucoidan extracts from Ascophyllum nodosum. Food Hydrocoll., 90, 462–471. [Google Scholar]
  • Paladines-Quezada D.F., Moreno-Olivares J.D., Fernández-Fernández, J.I., Bautista-Ortín, A.B., Gil-Muñoz, R., 2019. Influence of methyl jasmonate and benzothiadiazole on the composition of grape skin cell walls and wines. Food Chem., 277, 691–697. [PubMed] [Google Scholar]
  • Paris F., Trouvelot S., Jubien M., Lecollinet G., Joubert J.M., Chiltz A., Héloir M.C., Negrel J., Adrian M., Legentil L., Daire X., Ferrières V., 2019. Hydrophobized laminarans as new biocompatible anti-oomycete compounds for grapevine protection. Carbohydr. Polym., 225, 115224. [Google Scholar]
  • Parris K., 2011. Impact of agriculture on water pollution in OECD countries: Recent trends and future prospects. Int. J. Water Resour. Dev., 27, 33–52. [Google Scholar]
  • Pereira L., Morrison L., Shukla P.S., Critchley A.T., 2020. A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. J. Appl. Phycol., 32, 3561–3584. [Google Scholar]
  • Peso-Echarri P., Frontela-Saseta C., González-Bermúdez C.A., Ros-Berruezo G.F., Martínez-Graciá C., 2012. Polisacáridos de algas como ingredientes funcionales en acuicultura marina: alginato, carragenato y ulvano. Rev. Biol. Mar. Oceanogr., 47, 373–381. [Google Scholar]
  • Popescu G.C., Popescu M., 2014. Effect of the brown alga Ascophyllum nodosum as biofertilizer on vegetative growth in grapevine (Vitis vinifera L.). Curr. Trends Nat. Sci., 3, 61–67. [Google Scholar]
  • Provost C., Pedneault K., 2016. The organic vineyard as a balanced ecosystem: Improved organic grape management and impacts on wine quality. Sci. Hortic., 208, 43–56. [Google Scholar]
  • Ramirez-Estrada K., Vidal-Limon H., Hidalgo D., Moyano E., Golenioswki M., Cusidó R., Palazon J., 2016. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21, 182. [PubMed] [Google Scholar]
  • Ramsey R.J.L., Stephenson G.R., Hall J.C., 2005. A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pestic. Biochem. Physiol., 82, 162–175. [Google Scholar]
  • Rayirath P., Benkel B., Mark Hodges D., Allan-Wojtas P., MacKinnon S., Critchley A.T., Prithiviraj, B., 2009. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta, 230, 135–147. [PubMed] [Google Scholar]
  • Reed R.H., Davison I.R., Chudek J.A., Foster R., 1985. The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia, 24, 35–47. [Google Scholar]
  • Rogiers S.Y., Hardie W.J., Smith J.P., 2011. Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide. Aust. J. Grape Wine Res., 17, 147–152. [Google Scholar]
  • Romanazzi G., Mancini V., Feliziani E., Servili A., Endeshaw S., Neri D., 2016. Impact of alternative fungicides on grape downy mildew control and vine growth and development. Plant Dis., 100, 739–748. [PubMed] [Google Scholar]
  • Sabeena S.F., Alagarsamy S., Sattari Z., Al-Haddad S., Fakhraldeen S., Al-Ghunaim A., Al-Yamani F., 2020. Enzymeassisted extraction of bioactive compounds from brown seaweeds and characterization. J. Appl. Phycol., 32, 615–629. [Google Scholar]
  • Sabir A., 2015. Improvement of the pollen quality and germination levels in grapes (Vitis vinifera L.) by leaf pulverizations with nanosize calcite and seaweed extract (Ascophyllium nodosum). J. Anim. Plant Sci., 25, 1599–1605. [Google Scholar]
  • Sabir A., Yazar K., Sabir F., Kara Z., Yazici M.A., Goksu N., 2014. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic., 175, 1–8. [Google Scholar]
  • Saigne-Soulard C., Abdelli-Belhadj A., Télef-Micouleau M., Cluzet S., Bouscaut J., Corio-Costet M.F., Mérillon J.M., 2015. Oligosaccharides from Botrytis cinerea and elicitation of grapevine defense. In: Polysaccharides: Bioactivity and Biotechnology. 939–958. Ramawat, K., Mérillon, J.M. (eds.), Springer International Publishing, New York. [Google Scholar]
  • Salvi L., Brunetti C., Cataldo E., Niccolai A., Centritto M., Ferrini F., Mattii G.B., 2019. Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem., 139, 21–32. [PubMed] [Google Scholar]
  • Saravana P.S., Cho Y.N., Woo H.C., Chun B.S., 2018. Green and efficient extraction of polysaccharides from brown seaweed by adding deep eutectic solvent in subcritical water hydrolysis. J. Clean. Prod., 198, 1474–1484. [Google Scholar]
  • Sharma H.S.S., Fleming C., Selby C., Rao J.R., Martin T., 2014. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol., 26, 465–490. [Google Scholar]
  • Shibata T., Nagayama K., Tanaka R., Yamaguchi K., Nakamura T., 2003. Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J. Appl. Phycol., 15, 61–66. [Google Scholar]
  • Shukla P.S., Mantin E.G., Adil M., Bajpai S., Critchley A.T., Prithiviraj B., 2019. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci., 10, 655. [PubMed] [Google Scholar]
  • Stirk W.A., Arthur G.D., Lourens A.F., Novák O., Strnad M., van Staden J., 2004. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J. Appl. Phycol., 16, 31–39. [Google Scholar]
  • Stirk W.A., Tarkowská D., Turečová V., Strnad M., van Staden J., 2014. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol., 26, 561–567. [Google Scholar]
  • Stirk W.A., van Staden J., 1996. Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. J. Appl. Phycol., 8, 503–508. [Google Scholar]
  • Strydom J., 2014. The effect of foliar potassium and seaweed products in combination with a leonardite fertigation product on Flame Seedless grape quality. S. Afr. J. Enol. Vitic., 35, 283–291. [Google Scholar]
  • Synytsya A., Kim W.J., Kim S.M., Pohl R., Synytsya A., Kvasnička F., Čopíková J., Il Park Y., 2010. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr. Polym., 81, 41–48. [Google Scholar]
  • Taskos D., Stamatiadis S., Yvin J.C., Jamois F., 2019. Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a Merlot vineyard. Sci. Hortic., 250, 27–32. [Google Scholar]
  • Thankaraj S.R., Sekar V., Kumaradhass H.G., Perumal N., Hudson A.S., 2020. Exploring the antimicrobial properties of seaweeds against Plasmopara viticola (Berk. and M.A. Curtis) Berl. and De Toni and Uncinula necator (Schwein) Burrill causing downy mildew and powdery mildew of grapes. Indian Phytopathol., 73, 185–201. [Google Scholar]
  • Tomasi D., Jones G.V., Giust M., Lovat L., Gaiotti F., 2011. Grapevine phenology and climate change: Relationships and trends in the Veneto region of Italy for 1964-2009. Am. J. Enol. Vitic., 62, 329–339. [Google Scholar]
  • Turan M., Köse C., 2004. Seaweed extracts improve copper uptake of grapevine. Acta Agric. Scand. Sect. B Soil Plant Sci., 54, 213–220. [Google Scholar]
  • Vasconcelos M.C., Greven M., Winefield C.S., Trought M.C.T., Raw V., 2009. The flowering process of Vitis vinifera: A review. Am. J. Enol. Vitic., 60, 411–434. [Google Scholar]
  • Vásquez V., Martínez R., Bernal C., 2019. Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. J. Appl. Phycol., 31, 1999–2010. [Google Scholar]
  • Verdenal T., Spangenberg J.E., Zufferey V., Dienes-Nagy Á., Viret O., Van Leeuwen C., Spring J.L., 2020. Impact of crop load on nitrogen uptake and reserve mobilisation in Vitis vinifera. Funct. Plant Biol., 47, 744. [PubMed] [Google Scholar]
  • Verdenal T., Spangenberg J.E., Zufferey V., Lorenzini F., Dienes-Nagy A., Gindro K., Spring J.L., Viret O., 2016. Leaf-tofruit ratio affects the impact of foliar-applied nitrogen on N accumulation in the grape must. J. Int. des Sci. Vigne du Vin, 50, 23–33. [Google Scholar]
  • Verdenal T., Spangenberg J.E., Zufferey V., Lorenzini F., Spring J.-L., Viret O., 2015. Effect of fertilisation timing on the partitioning of foliar-applied nitrogen in Vitis vinifera cv. Chasselas: a 15N labelling approach. Aust. J. Grape Wine Res., 21, 110–117. [Google Scholar]
  • Verkleij F.N., 1992. Seaweed extracts in agriculture and horticulture: A review. Biol. Agric. Hortic., 8, 309–324. [Google Scholar]
  • Wang T., Jónsdóttir R., Ólafsdóttir G., 2009. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem., 116, 240–248. [Google Scholar]
  • Yabur R., Bashan Y., Hernández-Carmona G., 2007. Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J. Appl. Phycol., 19, 43–53. [Google Scholar]
  • Youssouf L., Lallemand L., Giraud P., Soulé F., Bhaw-Luximon A., Meilhac O., D’Hellencourt C.L., Jhurry D., Couprie J., 2017. Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydr. Polym., 166, 55–63. [Google Scholar]
  • Zermeño-González A., Mendez-López G., Rodríguez-García E., Cadena-Zapata M., Cárdenas-Palomo J.O., Catalán-Valencia E.A., 2015. Biofertilización de vid en relación con fotosíntesis, rendimiento y calidad de frutos. Agrociencia, 49, 875–887. [Google Scholar]
  • Zhang S., Mersha Z., Vallad G.E., Huang C.H., 2016. Management of powdery mildew in squash by plant and alga extract biopesticides. Plant Pathol. J., 32, 528–536. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.