Open Access
Ciência Téc. Vitiv.
Volume 36, Number 1, 2021
Page(s) 1 - 8
Published online 13 January 2021
  • Adrian M., Lucio M., Roullier-Gall C., Héloir M.-C., Trouvelot S., Daire X., Kanawati B., Lemaître-Guillier C., Poinssot B., Gougeon R., Schmitt-Kopplin P., 2017. Metabolic fingerprint of PS3-induced resistance of grapevine leaves against Plasmopara viticola revealed differences in elicitor-triggered defenses. Front Plant Sci., 8, 101. [CrossRef] [PubMed] [Google Scholar]
  • Becker L., Poutaraud A., Hamm G., Muller J.-F., Merdinoglu D., Carré V., Chaimbault P., 2013. Metabolic study of grapevine leaves infected by downy mildew using negative ion electrospray – Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chim. Acta, 795, 44–51. [CrossRef] [PubMed] [Google Scholar]
  • Brockman S.A., Roden E.V., Hegeman A.D., 2018. Van Krevelen diagram visualization of high resolution-mass spectrometry metabolomics data with OpenVanKrevelen. Metabolomics, 14. [Google Scholar]
  • Buonassisi D., Colombo M., Migliaro D., Dolzani C., Peressotti E., Mizzotti C., Velasco R., Masiero S., Perazzolli M., Vezzulli S., 2017. Breeding for grapevine downy mildew resistance: a review of “omics” approaches. Euphytica, 213. [Google Scholar]
  • Chitarrini G., Soini E., Riccadonna S., Franceschi P., Zulini L., Masuero D., Vecchione A., Stefanini M., Di Gaspero G., Mattivi F., Vrhovsek U., 2017. Identification of biomarkers for defense response to Plasmopara viticola in a resistant grape variety. Front. Plant Sci., 8. [PubMed] [Google Scholar]
  • Doke N., Miura Y., Sanchez L.M., Park H.J., Noritake T., Yoshioka H., Kawakita K., 1996. The oxidative burst protects plants against pathogen attack: Mechanism and role as an emergency signal for plant bio-defence — a review. Gene, 179, 45–51. [CrossRef] [PubMed] [Google Scholar]
  • Figueiredo A., Martins J., Sebastiana M., Guerreiro A., Silva A., Matos A.R., Monteiro F., Pais M.S., Roepstorff P., Coelho A.V., 2017. Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola. J. Proteomics, 152, 48–57. [CrossRef] [PubMed] [Google Scholar]
  • Fortes A.M., Pais M.S., 2016. Grape (Vitis species). In: Nutritional composition of fruit cultivars. 257–286. Simmonds M.S.J., Preedy V.R. (eds.), Academic Press. [CrossRef] [Google Scholar]
  • Frederickson Matika D.E., Loake G.J., 2014. Redox regulation in plant immune function. Antioxid. Redox Signal., 21, 1373–1388. [CrossRef] [PubMed] [Google Scholar]
  • García R.A.A., Revilla E., 2013. The Current status of wild grapevine populations (Vitis vinifera ssp sylvestris) in the Mediterranean Basin. The Mediterranean genetic code - grapevine and olive. [Google Scholar]
  • González-Bosch C., 2018. Priming plant resistance by activation of redox-sensitive genes. Free Radical Bio. Med., 122, 171–180. [CrossRef] [Google Scholar]
  • Gougeon R.D., Lucio M., De Boel A., Frommberger M., Hertkorn N., Peyron D., Chassagne D., Feuillat F., Cayot P., Voilley A., Gebefügi I., Schmitt-Kopplin P., 2009. Expressing forest origins in the chemical composition of cooperage oak woods and corresponding wines by using FTICR-MS. Chem. Eur. J., 15, 600–611. [CrossRef] [Google Scholar]
  • Gutiérrez Sama S., Farenc M., Barrère-Mangote C., Lobinski R., Afonso C., Bouyssière B., Giusti P., 2018. Molecular fingerprints and speciation of crude oils and heavy fractions revealed by molecular and elemental mass spectrometry: Keystone between petroleomic metallopetroleomics, and petrointeractomics. Energy & Fuels, 32, 4593–4605. [CrossRef] [Google Scholar]
  • Jaiswal R., Matei M.F., Golon A., Witt M., Kuhnert N., 2012. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies. Food Funct., 3, 976–984. [CrossRef] [PubMed] [Google Scholar]
  • Kew W., Blackburn J.W.T., Clarke D.J., Uhrín D., 2017. Interactive van Krevelen diagrams - Advanced visualisation of mass spectrometry data of complex mixtures: Interactive van Krevelen Diagrams. Rapid Commun. Mass Spectrom., 31, 658–662. [CrossRef] [PubMed] [Google Scholar]
  • Kuhnert N., Drynan J.W., Obuchowicz J., Clifford M.N., Witt M., 2010. Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Commun. Mass Spectrom., 24, 3387–3404. [CrossRef] [PubMed] [Google Scholar]
  • Kuhnert N., D’souza R.N., Behrends B., Ullrich M.S., Witt M., 2020. Investigating time dependent cocoa bean fermentation by ESI-FT-ICR mass spectrometry. Food Res. Int., 133, 109209. [CrossRef] [PubMed] [Google Scholar]
  • Laureano G., Figueiredo J., Cavaco A.R., Duarte B., Caçador I., Malhó R., Sousa Silva M., Matos A.R., Figueiredo A., 2018. The interplay between membrane lipids and phospholipase A family members in grapevine resistance against Plasmopara viticola. Sci Rep., 8, 14538. [CrossRef] [PubMed] [Google Scholar]
  • Li Q., Yan J., 2020. Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Bio., 21, 154. [CrossRef] [Google Scholar]
  • Maccelli A., Cesa S., Cairone F., Secci D., Menghini L., Chiavarino B., Fornarini S., Crestoni M.E., Locatelli M., 2020. Metabolic profiling of different wild and cultivated Allium species based on high-resolution mass spectrometr high-performance liquid chromatography-photodiode array detecto and color analysis. J. Mass Spectrom., 55, e4525. [CrossRef] [PubMed] [Google Scholar]
  • Maia M., Ferreira A.E.N., Nascimento R., Monteiro F., Traquete F., Marques A.P., Cunha J., Eiras-Dias J.E., Cordeiro C., Figueiredo A., Sousa Silva M., 2020a. Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Sci. Rep., 10, 15688. [CrossRef] [Google Scholar]
  • Maia M., Figueiredo A., Sousa Silva M., Ferreira A., 2020b. Grapevine untargeted metabolomics to uncover potential biomarkers of fungal/oomycetes-associated diseases. figshare. Dataset 12357314.v2. Available at: (accessed on 15.06.2020). [Google Scholar]
  • Maia M., Maccelli A., Nascimento R., Ferreira A.E.N., Crestoni M.E., Cordeiro C., Figueiredo A., Sousa Silva M., 2019. Early detection of Plasmopara viticola-infected leaves through FT-ICR-MS metabolic profiling. Acta Hortic., 1248, 575–580. [CrossRef] [Google Scholar]
  • Maia M., Monteiro F., Sebastiana M., Marques A.P., Ferreira A.E.N., Freire A.P., Cordeiro C., Figueiredo A., Sousa Silva M., 2016. Metabolite extraction for high-throughput FTICR-MS-based metabolomics of grapevine leaves. EuPA Open Proteom., 12, 4–9. [CrossRef] [PubMed] [Google Scholar]
  • Mann B.F., Chen H., Herndon E.M., Chu R.K., Tolic N., Portier E.F., Chowdhury T.R., Robinson E.W., Callister S.J., Wullschleger S.D., Graham D.E., Liang L., Gu B., 2015. Indexing permafrost soil organic matter degradation using high-resolution mass spectrometry. PLoS One, 10. [Google Scholar]
  • Martins N., Jiménez-Morillo N.T., Freitas F., Garcia R., Gomes da Silva M., Cabrita M.J., 2020. Revisiting 3D van Krevelen diagrams as a tool for the visualization of volatile profile of varietal olive oils from Alentejo regio Portugal. Talanta, 207, 120276. [CrossRef] [PubMed] [Google Scholar]
  • Nascimento R., Maia M., Ferreira A.E.N., Silva A.B., Freire A.P., Cordeiro C., Silva M.S., Figueiredo A., 2019. Early stage metabolic events associated with the establishment of Vitis viniferaPlasmopara viticola compatible interaction. Plant Physiol. Biochem., 137, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • OIV, 2017. Focus OIV 2017: Distribution of the world’s grapevine varieties. Available at: (accessed on 01.09.2020). [Google Scholar]
  • OIV, 2019. World vitiviniculture situation: OIV statistical report on world vitiviniculture. Available at: (accessed on 01.09.2020). [Google Scholar]
  • Roullier-Gall C., Hemmler D., Gonsior M., Li Y., Nikolantonaki M., Aron A., Coelho C., Gougeon R.D., Schmitt-Kopplin P., 2017. Sulfites and the wine metabolome. Food Chem., 237, 106–113. [CrossRef] [PubMed] [Google Scholar]
  • Roullier-Gall C., Signoret J., Hemmler D., Witting M.A., Kanawati B., Schäfer B., Gougeon R.D., Schmitt-Kopplin P., 2018. Usage of FT-ICR-MS metabolomics for characterizing the chemical signatures of barrel-aged whisky. Front. Chem., 6. [Google Scholar]
  • Roullier-Gall C., Witting M., Gougeon R.D., Schmitt-Kopplin P., 2014. High precision mass measurements for wine metabolomics. Front. Chem., 2. [Google Scholar]
  • Scoones I., 2016. The Politics of sustainability and development. Annu. Rev. Env. Resour., 41, 293–319. [CrossRef] [Google Scholar]
  • Sefc K.M., Steinkellner H., Lefort F., Botta R., Machado A.C., Borrego J., Maletić E., Glössl J., 2003. Evaluation of the genetic contribution of local wild vines to European grapevine cultivars. Am. J. Enol. Vitic., 54, 15–21. [Google Scholar]
  • Terral J.-F., Tabard E., Bouby L., Ivorra S., Pastor T., Figueiral I., Picq S., Chevance J.-B., Jung C., Fabre L., Tardy C., Compan M., Bacilieri R., Lacombe T., This P., 2010. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot., 105, 443–455. [CrossRef] [PubMed] [Google Scholar]
  • This P., Lacombe T., Thomas M., 2006. Historical origins and genetic diversity of wine grapes. Trends Genet., 22, 511–519. [CrossRef] [PubMed] [Google Scholar]
  • Torres M.A., Jones J.D.G., Dangl J.L., 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol., 141, 373–378. [CrossRef] [PubMed] [Google Scholar]
  • Trouvelot S., Héloir M.-C., Poinssot B., Gauthier A., Paris F., Guillier C., Combier M., Trdá L., Daire X., Adrian M., 2014. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front. Plant Sci., 5. [PubMed] [Google Scholar]
  • Tziotis D., Hertkorn N., Schmitt-Kopplin P., 2011. Kendrick-analogous network visualisation of ion cyclotron resonance Fourier transform mass spectra: improved options for the assignment of elemental compositions and the classification of organic molecular complexity. Eur. J. Mass Spectrom., 17, 415–421. [CrossRef] [Google Scholar]
  • Van Krevelen D.W., 1950. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel, 29, 269–228. [Google Scholar]
  • Veloso M.M., Almandanim M.C., Baleiras-Couto M., Pereira H.S., Carneiro L.C., Fevereiro P., Eiras-Dias J., 2010. Microsatellite database of grapevine (Vitis vinifera L.) cultivars used for wine production in Portugal. Ciência Téc. Vitiv., 25, 53–61. [Google Scholar]
  • Wu Z., Rodgers R.P., Marshall A.G., 2004. Two- and three-dimensional van Krevelen diagrams: A graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier Transform Ion Cyclotron Resonance Mass measurements. Anal Chem., 76, 2511–251. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.