Open Access
Ciência Téc. Vitiv.
Volume 35, Number 1, 2020
Page(s) 42 - 48
Published online 09 July 2020
  • Armijo G., Schlechter R., Agurto M., Muñoz D., Nuñez C., Arce-Johnson P., 2016. Grapevine pathogenic microorganisms: understanding infection strategies and host response scenarios. Front. Plant Sci., 7, 382. [CrossRef] [PubMed] [Google Scholar]
  • Dadakova K., Havelkova M., Kurkova B., Tlolkova I., Kasparovsky T., Zdrahal Z., Lochman J., 2015. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection. J. Proteomics, 119, 143–153. [CrossRef] [PubMed] [Google Scholar]
  • Dean R., Van Kan J.A.L., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D., 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol., 13, 414–430. [Google Scholar]
  • Duan X., Zhang Z., Wang J., Zuo K., 2016. Characterization of a novel cotton subtilase gene GbSBT1 in response to extracellular stimulations and its role in Verticillium resistance. PLOS ONE, 11, e0153988. [CrossRef] [PubMed] [Google Scholar]
  • Figueiredo A., Monteiro F., Fortes A.M., Bonow-Rex M., Zyprian E., Sousa L., Pais M.S., 2012. Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Funct. Integr. Genomics, 12, 379–386. [CrossRef] [PubMed] [Google Scholar]
  • Figueiredo J., Costa G.J., Maia M., Paulo O.S., Malhó R., Sousa Silva M., Figueiredo A., 2016. Revisiting Vitis vinifera subtilase gene family: a possible role in grapevine resistance against Plasmopara viticola. Front. Plant Sci., 7, 1783. [CrossRef] [PubMed] [Google Scholar]
  • Figueiredo J., Sousa Silva M., Figueiredo A., 2018. Subtilisin-like proteases in plant defence: the past, the present and beyond. Mol. Plant Pathol., 19, 1017–1028. [Google Scholar]
  • Gadoury D.M., Cadle-Davidson L., Wilcox W.F., Dry I.B., Seem R.C., Milgroom M.G., 2012. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol. Plant Pathol., 13, 1–16. [Google Scholar]
  • Gessler C., Pertot I., Perazzolli M., 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr., 50, 3–44. [Google Scholar]
  • Gindro K., Berger V., Godard S., Voinesco F., Schnee S., Viret O., Alonso-Villaverde V., 2012. Protease inhibitors decrease the resistance of Vitaceae to Plasmopara viticola. Plant Physiol. Biochem., 60, 74–80. [CrossRef] [PubMed] [Google Scholar]
  • Gruau C., Trotel-Aziz P., Villaume S., Rabenoelina F., Clément C., Baillieul F., Aziz A., 2015. Pseudomonas fluorescens PTA-CT2 triggers local and systemic immune response against Botrytis cinerea in grapevine. Mol. Plant. Microbe Interact., 28, 1117–1129. [CrossRef] [PubMed] [Google Scholar]
  • Hellemans J., Mortier G., De Paepe A., Speleman F., Vandesompele J., 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol., 8, R19. [PubMed] [Google Scholar]
  • OIV, 2019. World vitiviniculture situation: OIV statistical report on world vitiviniculture. Available at: (assessed on 18.04.2020). [Google Scholar]
  • Jarvis W.R., 1962. The dispersal of spores of Botrytis cinereafr. in a raspberry plantation. Trans. Br. Mycol. Soc., 45, 549–559. [CrossRef] [Google Scholar]
  • Jones J.D.G., Dangl J.L., 2006. The plant immune system. Nature, 444, 323–329. [CrossRef] [PubMed] [Google Scholar]
  • Martins I., 2018. Património único que se distingue e valoriza pela diversidade de castas. Portugal global, 109, 7–11. [Google Scholar]
  • Maul E., Töpfer R., 2015. Vitis International Variety Catalogue (VIVC): A cultivar database referenced by genetic profiles and morphology. BIO Web Conf., 5, 01009. [CrossRef] [EDP Sciences] [Google Scholar]
  • Nanni V., Schumacher J., Giacomelli L., Brazzale D., Sbolci L., Moser C., Tudzynski P., Baraldi E., 2014. VvAMP2, a grapevine flower-specific defensin capable of inhibiting Botrytis cinerea growth: insights into its mode of action. Plant Pathol., 63, 899–910. [Google Scholar]
  • Norero N.S., Castellote M.A., de la Canal L., Feingold S.E., 2016. Genome-wide analyses of subtilisin-like serine proteases on Solanum tuberosum. Am. J. Potato Res., 93, 485–496. [CrossRef] [Google Scholar]
  • Pessina S., 2016. Role of MLO genes in susceptibility to powdery mildew in apple and grapevine. 222 p. PhD Thesis, Wageningen University. [Google Scholar]
  • This P., Lacombe T., Thomas M.R., 2006. Historical origins and genetic diversity of wine grapes. Trends Genet., 22, 511–519. [CrossRef] [PubMed] [Google Scholar]
  • Tian M., 2005. A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol., 138, 1785–1793. [Google Scholar]
  • Tian M., Huitema E., da Cunha L., Torto-Alalibo T., Kamoun S., 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J. Biol. Chem., 279, 26370–26377. [CrossRef] [PubMed] [Google Scholar]
  • Tornero P., Conejero V., Vera P., 1996a. Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: similarity of functional domains to subtilisin-like endoproteases. Proc. Natl. Acad. Sci., 93, 6332–6337. [CrossRef] [Google Scholar]
  • Tornero P., Mayda E., Gómez M.D., Cañas L., Conejero V., Vera P., 1996b. Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis. Plant J., 10, 315–330. [Google Scholar]
  • Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol., 3, research0034. [PubMed] [Google Scholar]
  • Veloso M.M., Almandanim M.C., Baleiras-Couto M., Pereira H.S., Carneiro L.C., Fevereiro P., Eiras-Dias J., 2010. Microsatellite database of grapevine (Vitis vinifera L.) cultivars used for wine production in Portugal. Ciência Téc. Vitiv., 25, 53–61. [Google Scholar]
  • Vera P., Conejero V., 1988. Pathogenesis-related proteins of tomato P-69 as an alkaline endoproteinase. Plant Physiol., 87, 58–63. [Google Scholar]
  • Vera P., Yago J.H., Conejero V., 1989. Immunogold localization of the citrus exocortis viroid-induced pathogenesis-related proteinase P69 in tomato leaves. Plant Physiol., 91, 119–123. [Google Scholar]
  • Welter L.J., Tisch C., Kortekamp A., Töpfer R., Zyprian E., 2017. Powdery mildew responsive genes of resistant grapevine cultivar “Regent.” VITIS - J. Grapevine Res., 56, 181–188. [Google Scholar]
  • Weng K., Li Z.-Q., Liu R.-Q., Wang L., Wang Y.-J., Xu Y., 2014. Transcriptome of Erysiphe necator-infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. Hortic. Res., 1, 1–12. [Google Scholar]
  • Zhao Y., Thilmony R., Bender C.L., Schaller A., He S.Y., Howe G.A., 2003. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J., 36, 485–499. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.