Open Access
Issue
Ciência Téc. Vitiv.
Volume 35, Number 1, 2020
Page(s) 30 - 41
DOI https://doi.org/10.1051/ctv/20203501030
Published online 29 June 2020
  • Barata A., Malfeito-Ferrera M., Loureiro V., 2012. The microbial ecology of wine grape berries. Int. J. Food Microbiol., 153, 243–259. [CrossRef] [PubMed] [Google Scholar]
  • Barata A., Seborro F., Belloch C., Malfeito-Ferrera M., Loureiro V., 2008. Ascomycetous yeast species recovered from grape damaged by honeydew and sour rot. J. Appl. Microbiol., 104, 1182–1191. [Google Scholar]
  • Belda I., Conchillo L.B., Ruiz J., Navascués E., Marquina D., Santos A., 2016. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol., 223, 1–8 [CrossRef] [PubMed] [Google Scholar]
  • Bernardi A.M., 2013. Selección de levaduras vínicas provenientes de la provincia de Mendoza. 54 p. PhD Thesis, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. [Google Scholar]
  • Bokulich N.A., Thorngate J.H., Richardson P.M., Mills D.A., 2013. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. U.S.A., 111, 139–148. [Google Scholar]
  • Callejón R.M., Clavijo A., Ortigueira P., Troncoso A.M., Paneque P., Morales M.L., 2010. Volatile and sensory profile of organic red wines produced by different selected autocthonus and commercial Saccharomyces cerevisiae strains. Anal. Chim. Acta., 660, 68–75. [CrossRef] [PubMed] [Google Scholar]
  • Capozzi V., Garofalo C., Chiriatti M.A., Grieco F., Spano G., 2015. Microbial terroir and food innovation: the case of yeast biodiversity in wine. Microbiol. Res., 181, 75–83. [CrossRef] [PubMed] [Google Scholar]
  • Chidi B.S., Bauer F.F., Rossouw D. 2018. Organic acid metabolism and the impact of fermentation practices on wine acidity: A review. S. Afr. J. Enol. Vitic., 39, 1–15. [Google Scholar]
  • Crespo-Sampere A., Estiarte N., Marín S., Sanchis V., Ramos A.J., 2013. Propidium monoazid combined with real-time quantitative PCR to quantify viable Alternaria spp. contamination in tomato products. Int. J. Food Mucrobiol., 165, 214–220. [CrossRef] [Google Scholar]
  • Cordero-Bueso G., Arroyo T., Serrano A., Tello J., Aporta I., Vélez M.D., Valero E., 2011. Influence of the farming system and vine variety on yeasts communities associated with grape berries. Int. J. Food Microbiol., 145, 132–139. [CrossRef] [PubMed] [Google Scholar]
  • De La Garza-Toledo H., Martínez M., Lara L., Rodríguez-Herrera R., Rodríguez-Martínez J., Aguilar C. N., 2008. Production of a Mexican alcoholic beverage: Sotol. Res. J. Biol. Sci., 3, 566–571. [Google Scholar]
  • Escalante-Minakata P., Blaschek H.P., Barba de la Rosa A.P., Santos L., De León-Rodríguez A., 2008. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana. Lett. Appl. Microbiol., 46, 626–630. [CrossRef] [PubMed] [Google Scholar]
  • Esteve-Zarzoso B., Belloch C., Uruburu F., Querol A., 1999. Idenfication of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol., 49, 329–337. [CrossRef] [PubMed] [Google Scholar]
  • Fleet G H. 2003. Yeast interactions and wine flavour. Int. J. Food Microbiol., 86, 11–22. [CrossRef] [PubMed] [Google Scholar]
  • Garijo P., López R., Santamaría P., Ocón E., Olarte C., Sanz S., Gutiérrez A., 2011. Presence of enological microorganisms in the grapes and the air of a vineyard during the ripening period. Eur. Food Res. Technol., 233, 359–365. [Google Scholar]
  • Grube M., Schimd F., Berg G., 2011. Black fungi and associates bacterial communities in the phyllospehere of grapevine. Bull. Br. Mycol. Soc., 115, 978–986. [Google Scholar]
  • Hu K., Zhu X.L., Mu H., Ma Y., Ullah N., Tao, Y.S., 2016. A novel extracellular glycosidase activity from Rhodotorula mucilaginosa: its application potential in wine aroma enhancement. Let. Appl. Microbiol., 62, 169–176. [CrossRef] [Google Scholar]
  • Jolly N. P, Varela C., Pretorius I.S., 2014. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res., 14, 215–237. [CrossRef] [PubMed] [Google Scholar]
  • Kyrchmayr M., Segura-García L.E., Lappe-Oliveras P., Moreno-Terrazas R., De la Rosa M., Mathis A.G., 2017. Impact of environmental conditions and process modifications on microbial diversity, fermentation efficiency and chemical profile during the fermentation of mescal in Oaxaca. Food Sci. Technol., 79, 160–169. [Google Scholar]
  • Li S., Cheng C., Li Z., Chen J., Yan B., Han B., Reeves M., 2010. Yeasts species associated with wine grapes in China. Int. J. Food Microbiol., 138, 85–90. [CrossRef] [PubMed] [Google Scholar]
  • Liu P-T, Lu L., Duan C-Q, Yan G.-L., 2016. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT - Food Sci. Technol., 71, 356–363. [CrossRef] [Google Scholar]
  • Lopes C.A., Sangorrin, M.P., 2010. Optimization of killer assays for yeast selection protocols. Rev. Argent. Microbiol., 42, 298–306. [PubMed] [Google Scholar]
  • Ma D., Yan X., Wang Q., Zhang, Y., Tao Y., 2017. Performance of selected P. fermentans and its excellular enzyme in co-inoculation with S. cerevisiae for wine aroma enhancement. Food Sci. Technol., 86, 361–370. [Google Scholar]
  • Mendes S.D.C., Ramírez-Castrillón M., Feldberg N.P., Bertoldi F.C., Valente P., 2017. Environmetal yeasts communities in vineyards in the mountains of Santa Catarina State, Brazil. World J. Microbiol. Biotechnol., 33, 128. [CrossRef] [PubMed] [Google Scholar]
  • Miranda-Castilleja D.E., Aldrete-Tapia J.A., Arvizu-Medrano S.M., Hernández-Iturriaga M., Soto-Muñoz L., Martínez-Peniche R.Á., 2017. Growth kinetics for the selection of yeast strains for fermented beverages. In: Yeast-Industrial application I. 87–67. Morata A., Loira I.(eds.), Intech, Rijeka. [Google Scholar]
  • Miranda-Castilleja D.E., Ortiz-Barrera E., Arvizu-Medrano S.M., Ramiro-Pacheco J., Aldrete-Tapia J.A., Martínez-Peniche, R.Á., 2015. Isolation, selection and identification of native Saccharomyces spp.yeasts form vineyards in Querétaro, México. Agrociencia, 49, 759–773. [Google Scholar]
  • OIV, 2019a. International code of oenological practices. 431 p. International Organisation of Vine and Wine, Paris. [Google Scholar]
  • OIV, 2019b. Compendium of international methods of wine and must analysis. Vol 1. 593 p. International Organisation of Vine and Wine, Paris. [Google Scholar]
  • Ortiz-Barrera E., Miranda-Castilleja D.E., Arvizu-Medrano S.M., Pacheco-Aguilar J.R., Aldrete-Tapia J.A., Hernández-Iturriaga M., Martínez-Peniche R.A. 2015. Enological potential of native non-Saccharomyces yeasts from vineyards established in Querétaro, México. RCHSH, 21, 169–183. [Google Scholar]
  • Padilla B., García-Fernández, D., González B., Izidoro I., Esteve-Zarzoso B., Beltran G., Mas A., 2016b. Yeast biodiversity from DOQ Priorat uninoculated fermentations. Front. Microbiol., 7, 930. [PubMed] [Google Scholar]
  • Padilla B., Gil J.V., Manzanares P., 2016a. Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol., 7, 411. [PubMed] [Google Scholar]
  • Pérez G., Fariña L., Barquet M., Boido E., Gaggero C., Dellacassa E., Carrau F., 2011. A quick screening method to identify β-glucosidase activity in native wine yeast strains: Application of Esculin Glycerol Agar (EGA) medium. World J. Microbiol. Biotechnol., 27, 47–55. [Google Scholar]
  • Pérez-Martín F., Seseña S., Fernández-González M., Arévalo M., Llanos M., 2014. Microbial communities in air and wine of a winery in two consecutive vintage. Int. J. Food Microbiol., 190, 144–153. [Google Scholar]
  • Phaff H.J., Miranda M., Starmer W.T., Tredick J., Barker J.S.F., 1986. Clavispora opuntiae, a new heterothallic yeast occurring in necrotic tissue of Opuntia species. Int. J. Syst. Bacteriol., 36, 372–379. [Google Scholar]
  • Pinto C., Pinho D., Sousa S., Pinheiro M., Egas C., Gomes A., 2014. Unravelling the diversity of grapevine microbiome. PLOS ONE, 9, e85622. [CrossRef] [PubMed] [Google Scholar]
  • Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., 2006. Handbook of Enology: The microbiology of wine and vinifications. 497 p. University of Bordeaux II, Bordeaux. [Google Scholar]
  • Varela C., 2016. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. App. Microbiol. Biotechnol., 100, 9861–9874. [CrossRef] [Google Scholar]
  • Varela C., Borneman A.R., 2016. Yeasts found in vineyards and wineries. Yeast, 34, 111–128. [CrossRef] [PubMed] [Google Scholar]
  • Wang X.C., Li A.H., Dizy M., Ullah N., Sun W.X, Tao Y.S., 2017. Evaluation of aroma enhancement for “Ecolly” dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Food Chem., 228, 550–559. [Google Scholar]
  • Wang Y., Li Y., Xu W., Zheng X., Zhang, X., Abdelhai M., Zhao L., Li, H., Diao J., Zhang H., 2018a. Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved. BioControl, 121, 14–22. [Google Scholar]
  • Wang Y., Zhao Y.C., Fan L.L., Xia X.D., Li Y.H., Zhou J.Z., 2018b. Identification and characterization of Pichia membranifaciens Hmp-1 isolated from spoilage blackberry wine. J. Integr. Agric., 17, 2126–2136. [Google Scholar]
  • Watson T.G., 1976. Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source. Microbiol., 96, 263–268. [Google Scholar]
  • Whiting G.C., 1976. Organic acid metabolism of yeast during fermentation of acloholic beverages – A Review. J. Inst. Brew., 82, 84–92. [CrossRef] [Google Scholar]
  • Zanol G.C., Baleiras-Couto M.M., Duarte F.L., 2010. Restriction profiles of 26s rDNA as a molecular approach for wine yeasts identificacion. Ciência Tec Vitiv., 17, 75–85. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.