Open Access
Issue
Ciência Téc. Vitiv.
Volume 34, Number 1, 2019
Page(s) 61 - 70
DOI https://doi.org/10.1051/ctv/20193401061
Published online 12 August 2019
  • Alves F., Edlmann M., Costa J., Costa P., Macedo P., da Costa P.L., Symington C., 2013. Heat requirements and length of phenological stages. Effects of rootstock on red grape varieties at Douro Region. In: 18th International Symposium GIESCO, Porto, Portugal, 7–11 July 2013. [Google Scholar]
  • Apel K., Hirt H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55, 373–99. [CrossRef] [PubMed] [Google Scholar]
  • Atkinson N.J., Urwin P.E., 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot., 63, 3523–3544. [CrossRef] [PubMed] [Google Scholar]
  • Barrios-Masias F.H., Knipfer T., McElrone A.J., 2015. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. J. Exp. Bot., 66, 6069–6078. [CrossRef] [PubMed] [Google Scholar]
  • Bonada M., Sadras V.O., 2015. Review: critical appraisal of methods to investigate the effect of temperature on grapevine berry composition. Aust. J. Grape Wine Res., 21, 1–17. [CrossRef] [Google Scholar]
  • Bonnefoy C., Quenol H., Bonnardot V., Barbeau G., Madelin M., Planchon O., Neethling E., 2013. Temporal and spatial analyses of temperature in a French wine-producing area: the Loire Valley. Int. J. Climatol., 33, 1849–1862. [CrossRef] [Google Scholar]
  • Cardone et al. M.F., D’Addabbo P.D., Alkan C., Bergamini C., Catacchio CR, Anaclerio F, Chiatante G., Marra A., Giannuzzi G, Perniola R., Ventura M.,Antonaccí D., 2016. Inter-varietal structural variation in grapevine genomes. Plant J., 88, 648–661. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho A., Leal F., Matos M., Lima-Brito J., 2018. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties. Protoplasma, 255, 1725–1740. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho L.C., Coito J.L., Colaço S., Sangiogo M., Amâncio S., 2015. Heat stress in grapevine: the pros and cons of acclimation. Plant Cell Environ., 38, 777–789. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho L.C., Coito J.L., Gonçalves E.F., Chaves M.M., 2016. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biol., 18, 101–111. [CrossRef] [Google Scholar]
  • Carvalho L.C., Silva M., Coito J.L., Rocheta M.P., Amâncio S., 2017. Design of a custom RT-qPCR array for assignment of abiotic stress tolerance in traditional Portuguese grapevine varieties. Front. Plant. Sci., 8, 1835. [CrossRef] [PubMed] [Google Scholar]
  • Castro C., Carvalho A., Pavia I., Leal F., Moutinho-Pereira J., Lima-Brito J., 2018. Nucleolar activity and physical location of ribosomal DNA loci in Vitis vinifera L. by silver staining and sequential FISH. Sci Hortic., 232, 57–62. [CrossRef] [Google Scholar]
  • Chaves M.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P., Osório M.L., Carvalho I., Faria T., Pinheiro C., 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot., 89, 907–916. [CrossRef] [PubMed] [Google Scholar]
  • Da Silva P.R., Bione N.C.P., Da Silva N., Pagliarini M.S., 2001. Meiotic behavior of the Brazilian table grape cultivar Rubi (Vitis vinifera) with a high proportion of seedless berries. Vitis, 40, 1–4. [Google Scholar]
  • Dalla Marta A., Grifoni D., Mancini M., Storchi P., Zipoli G., Orlandini S., 2010. Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. J. Agric. Sci., 148, 657–666. [CrossRef] [Google Scholar]
  • Duchêne E., 2016. How can grapevine genetics contribute to the adaptation to climate change? OENO One, 50, 3, 113–124. [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A., 2013. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int. J. Biometeorol., 57, 909–925. [CrossRef] [PubMed] [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A., 2015a. Agriculture and Climate Change -Adapting Crops to Increased Uncertainty (AGRI 2015). Grapevines growing under future RCP scenarios in Europe. Procedia Environ. Sci., 29, 20. [CrossRef] [Google Scholar]
  • Fraga H., Santos J.A., Malheiro A.C., Oliveira A.A., Moutinho-Pereira J., Jones G.V., 2015b. Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Climatol., doi: 10.1002/joc.4325 [Google Scholar]
  • Frantzios G., Galatis B., Apostolakos P., 2000. Aluminium effects on microtubule organization in dividing root-tip cells of Triticum turgidum. I mitotic cells. New Phytol., 145, 211–224. [CrossRef] [Google Scholar]
  • Ghosh D., Xu J., 2014. Abiotic stress responses in plant roots: a proteomics perspective. Front. Plant Sci., 5, Article 6, 1–13. doi: 10.3389/fpls.2014.00006. [CrossRef] [Google Scholar]
  • Gill S.S., Tuteja N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. PPB/ Societe francaise de physiologie vegetale, 48, 909–30. [Google Scholar]
  • Giménez-Abián M.I., Utrilla L., Cánovas J.L., Giménez-Martin G., Navarrete M.H., De la Torre C., 1998. The positional control of mitosis and cytokinesis in higher-plant cells. Planta, 204, 37–43. [PubMed] [Google Scholar]
  • Gowda V.R.P., Henry A., Yamauchi A., Shashidhar H.E., Serraj R., 2011. Root biology and genetic improvement for drought avoidance in rice. Field Crops Res., 122, 1–13. [CrossRef] [Google Scholar]
  • Haas H.U., Alleweldt G., 2000. The katyotype of grapevine (Vitis vinifera L.). ISHS Acta Hortic., 528, VII Int. Symp. Grapevine Genet. Breed. doi: 10.17660/ActaHortic.2000.528.33 [Google Scholar]
  • Haas H.U., Budahm H., Alleweldt G., 1994. In situ hybridization in Vitis vinifera L.. Vitis, 33, 251–252. [Google Scholar]
  • Hanif F., Afshan S., 2013. Evaluating the response of wheat genotypes to salinity stress. Asian J. Agric. Sci., 5, 126–129. [Google Scholar]
  • Heckenberger U., Roggatz U., Schurr U., 1998. Effect of drought stress on the cytological status in Ricinus communis. J. Exp. Bot., 49, 181–189. [CrossRef] [Google Scholar]
  • Huang B., Rachmilevitch S., Xu J., 2012. Root carbon and protein metabolism associated with heat tolerance. J. Exp. Bot., 63, 3455–3465. [CrossRef] [PubMed] [Google Scholar]
  • Ichihashi Y., Tsukaya H., 2015. Behavior of leaf meristems and their modification. Front. Plant Sci., 6, 1060. doi: 10.3389/fpls.2015.01060. [CrossRef] [PubMed] [Google Scholar]
  • Jones G., Alves F., 2013. The climate of the Douro: structure, trends and mitigation and adaptation responses to a changing climate. In: Proc. 18th Int. Symp. GIESCO, 7-11 July 2013, Porto, Portugal. [Google Scholar]
  • Lima-Brito J., Guedes-Pinto H., Harrison G.E., Heslop-Harrison J.S., 1996. Chromosome identification and nuclear architecture in triticale x tritordeum F1 hybrids. J. Exp. Bot., 47, 583–588. [CrossRef] [Google Scholar]
  • Liu G.T., Wang J.F., Cramer G., Dai Z.W., Duan W., Xu H.G., Wu B.H., Fan P.G., Wang L.J., Li S.H., 2012. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol., 12, 174–183. [CrossRef] [PubMed] [Google Scholar]
  • Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15, 473–497. [CrossRef] [Google Scholar]
  • Nefic H., Musanovic J., Metovic A., Kurteshi K., 2013. Chromosomal and nuclear alterations in root tip cells of Allium cepa L. induced by alprazolam. Med. Arh., 67, 388–392. [CrossRef] [Google Scholar]
  • Neumann P.A., Matzarakis A., 2014. Estimation of wine characteristics using a modified Heliothermal Index in Baden-Wurttemberg, SW Germany. Int. J. Biometeorol., 58, 407–415. [CrossRef] [Google Scholar]
  • Parker A., de Cortázar-Atauri I.G., Chuine I., Barbeau G., Bois B., Boursiquot J.-M., Cahurel J.-Y., Claverie M., Dufourcq T., Gény L., Guimberteau G., Hofmann R.W., Jacquet O., Lacombe T., Monamy C., Ojeda H., Panigai L., Payan J.-C., Lovelle B.R., Rouchaud E., Schneider C., Spring J.-L., Storchi P., Tomasi D., Trambouze W., Trought M., van Leeuwen C., 2013. Classification of varieties for their timing of flowering and veraison using a modelling approach: a case study for the grapevine species Vitis vinifera L. Agric. Forest Meteorol., 180, 249–264. [CrossRef] [Google Scholar]
  • Patil S.G., Patil V.P., 1992. Karyomorphology of Vitis vinifera, V. rotundifolia and their hybrid. Cytologia, 57, 91–95. [CrossRef] [Google Scholar]
  • Pekol S., Baloğlu M.C., Çelik Altunoğlu Y., 2016. Evaluation of genotoxic and cytotoxic effects of environmental stress in wheat species with different ploidy levels. Turk. J. Biol., 40, 580–588. [CrossRef] [Google Scholar]
  • Pereira H.S., Delgado M., Avó A.P., Barão A., Serrano I., Viegas W., 2014. Pollen grain development is highly sensitive to temperature stress in Vitis vinifera. Aust. J. Grape Wine Res., 20, 474–484. [CrossRef] [Google Scholar]
  • Pierozzi N.I., 2011. Karyotype and NOR-banding of mitotic chromosomes of some Vitis L. species. Rev. Bras. Frutic., Jaboticabal – SP, E, 564–570. [CrossRef] [Google Scholar]
  • Pierozzi N.I., Moura M.F., 2016. Karyotype analysis in grapevines. Rev. Bras. Frutic., Jaboticabal – SP, 38, 213–221. [CrossRef] [Google Scholar]
  • Pinto-Maglio C.A.F., Pommer C.V., Pierozzi N.I., 2010. Giemsa staining and fluorescent banding in some Vitis L. species. Caryologia, 63, 339–348. [CrossRef] [Google Scholar]
  • Portaria nº. 383/2017, Diário da República, 1.ª série -N.º 243 -20 de dezembro de 2017, Agricultura, Florestas e Desenvolvimento Rural, pp. 6659-6660 (In Portuguese) [Google Scholar]
  • Reis S., Pavia I., Carvalho A., Moutinho-Pereira J., Correia C., Lima-Brito J., 2018. Seed priming with Iron and Zinc in bread wheat: effects in germination, mitosis and grain yield. Protoplasma, 255, 1179–1194. [CrossRef] [PubMed] [Google Scholar]
  • Rocheta M., Coito J.L., Ramos M.J.N., Carvalho L., Becker J.D., Carbonell-Bejerano P., Amâncio S., 2016. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions. BMC Plant Biol., 16, 224. [CrossRef] [PubMed] [Google Scholar]
  • Santaguida S., Amon A., 2015. Short-and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol., 16, 473–485. [CrossRef] [PubMed] [Google Scholar]
  • Schuppler U., He P.-H., John P.C.L., Munns R., 1998. Effect of water stress on cell division and cell-division-cycle 2-like cellcycle kinase activity in wheat leaves. Plant Physiol., 117, 667–678. [CrossRef] [Google Scholar]
  • Smertenko A., Dráber P., Viklický V., Opatrný Z., 1997. Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ., 20, 1534–1542. [CrossRef] [Google Scholar]
  • van Leeuwen C., Garnier C., Agut C., Baculat B., Barbeau G., Besnard E., Bois B., Boursiquot J.-M., Chuine I., Dessup T., Dufourcq T., Garcia-Cortazar I., Marguerit E., Monamy C., Koundouras S., Payan J.-C., Parker A., Renouf V., Rodriguez-Lovelle B., Roby J.-P., Tonietto J., Trambouze W., 2008. Heat requirements for grapevine varieties are essential information to adapt plant material in a changing climate. In: Proc. 7th Int. Terroir Cong., Changins, Switzerland (Agroscope Changins-Wädenswil: Switzerland), pp. 222–227. [Google Scholar]
  • Wahid A., Gelani S., Ashraf M., Foolad M., 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot., 61, 199–223. [CrossRef] [Google Scholar]
  • Xu Y., Burgess P., Huang B., 2015. Root antioxidant mechanisms in relation to root thermotolerance in perennial grass species contrasting in heat tolerance. PLoS ONE, 10(9), e0138268. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.