Open Access
Issue
Ciência Téc. Vitiv.
Volume 33, Number 2, 2018
Page(s) 177 - 183
DOI https://doi.org/10.1051/ctv/20183302177
Published online 09 January 2019
  • Alva O., Roa-Roco R.N., Pérez-Díaz R., Yáñez M., Tapia J., Moreno Y., Ruiz-Lara S., González E., 2015. Pollen morphology and boron concentration in floral tissues as factors triggering natural and GA-induced parthenocarpic fruit development in grapevine. PLoS ONE, 10: e0139503. [CrossRef] [PubMed] [Google Scholar]
  • Arrington M., DeVetter L.W., 2017. Foliar applications of calcium and boron do not increase fruit set or yield in Northern Highbush Blueberry (Vaccinium corymbosum). HortScience, 52, 1259–1264. [CrossRef] [Google Scholar]
  • Belancic A., Agosin E., 2007. Methoxypyrazines in grapes and wines of Vitis vinifera cv. Carmenere. Am. J. Enol. Vitic, 58, 462–469. [Google Scholar]
  • Brown P.H., Hu H., Roberts W.G., 1999. Occurrence of sugar alcohols determines boron toxicity symptom of ornamental species. HortScience, 124, 347–352. [Google Scholar]
  • Brown P.H., Shelp B.J., 1997. Boron mobility in plants. Plant Soil, 193, 85–101. [CrossRef] [Google Scholar]
  • Christensen L.P., Beede R.H., Peacock W.L., 2006. Fall foliar sprays prevent boron-deficiency symptoms in grapes. Calif. Agric, 60, 100–103. [CrossRef] [Google Scholar]
  • Dordas C., 2005. Foliar boron application improves seed set, seed yield, and seed quality of Alfalfa. Agron. J, 98, 907–913. [CrossRef] [Google Scholar]
  • Frioni T., Sabbatini P., Tombesi S., Norrie J., Poni S., Gatti M., Pallioti A., 2018. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hort., 232. 97–106. [CrossRef] [Google Scholar]
  • Gutiérrez-Gamboa G., Garde-Cerdán T., Gonzalo-Diago A., Moreno-Simunovic Y., Martínez-Gil, AM., 2017a. Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard. LWTFood Sci. Technol, 75, 147–154. [Google Scholar]
  • Gutiérrez-Gamboa G., Portu J., Santamaría P., López R., Garde-Cerdán T., 2017b. Effects on grape amino acid concentration through foliar application of three different elicitors. Food Res. Int. 99, 688–692. [CrossRef] [Google Scholar]
  • Gutiérrez-Gamboa G., Romanazzi G., Garde-Cerdán T., PérezÁlvarez E.P., 2018. A review of the use of biostimulants in the vineyard for improved grape and wine quality: Effects on prevention of grapevine diseases. J. Sci. Food Agric. In Press. [Google Scholar]
  • Hernández A., 2000. Introducción al vino de Chile. Santiago, Chile: Ediciones Universidad Católica de Chile. [Google Scholar]
  • Keller M., 2010. The Science of Grapevines: Anatomy and Physiology. London: Academic Press. [Google Scholar]
  • Keller M., Zhang Y., Shrestha P.M., Biondi M., Bondada B.R., 2014. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Pant Cell Environ., 38, 1048–1059. [CrossRef] [Google Scholar]
  • Khan A.S., Ahmad B., Jaskani MJ., Ahmad R., Malik A.U., 2012. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol., 14, 383–388. [Google Scholar]
  • Neethling E., Petitjean T., Quénol H., Barbeau G., 2017. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adap. Strat. Gl, 22, 777–803. [CrossRef] [Google Scholar]
  • Nikkhah R., Nafar H., Rastgoo S., Dorostkar M., 2013. Effect of foliar application of boron and zinc on qualitative and quantitative fruit characteristics of grapevine (Vitis vinifera L.). Int. J. Agric. Crop Sci., 6, 485–492. [Google Scholar]
  • OIV, 2003. Compendium of internationals methods of wine and must analysis. Paris: OIV. [Google Scholar]
  • Pszczólkowsky P., 2004. Les millésimes: Chili 2004. Académie Suisse du Vin, 42, 9–10. [Google Scholar]
  • Pszczólkowsky P., 2008. La culture du cépage Carmenere: L’optimum pour la qualité de son vin. Progrès Agricole et Viticole, 9, 125. [Google Scholar]
  • SAG, 2015. Catastro Vitícola Nacional. Servicio Agrícola y Ganadero, Santiago, Chile (http://www.sag.gob.cl/). [Google Scholar]
  • Tanaka M., Fujiwara T., 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Eur. J. Physiol., 456, 671–677. [CrossRef] [Google Scholar]
  • Vasconcelos M., Greven M., Winefield C., Trought M., Raw V., 2009. The flowering process of Vitis vinifera: A review. Am. J. Enol. Vitic., 60, 411–434. [Google Scholar]
  • Volschenk C.G., Hunter J.J., Le Roux D.J., Watts J.E., 1999. Effect of graft combination and position of application on assimilation and translocation of zinc in grapevines. J. Plant Nutr., 22, 115–119. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.