Open Access
Issue
Ciência Téc. Vitiv.
Volume 33, Number 2, 2018
Page(s) 167 - 176
DOI https://doi.org/10.1051/ctv/20183302167
Published online 23 November 2018
  • Brohan P., Kennedy J.J., Harris I., Tett S.F.B., Jones P.D., 2006. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research Atmospheres, 111 (12): D12106. [Google Scholar]
  • Brownlee J., 2016. Overfitting and Underfitting With Machine Learning Algorithms. Machine Learning Mistery. Available at: https://machinelearningmastery.com/overfitting-and-underfittingwith-machine-learning-algorithms/ [Accessed May 11, 2018]. [Google Scholar]
  • C. Real A., Borges J., Sarsfield Cabral J., Jones G.V., 2014. Partitioning the grapevine growing season in the Douro Valley of Portugal: Accumulated heat better than calendar dates. International Journal of Biometeorology, 59 (8): 1045–59. [CrossRef] [PubMed] [Google Scholar]
  • C. Real A., Borges J., Cabral J.S., Jones G.V., 2016. A climatology of Vintage Port quality. Int. J. Climatol., 37, 3798–3809. [Google Scholar]
  • Dall’Amico M., Hornsteiner,M., 2006. A simple method for estimating daily and monthly mean temperatures from daily minima and maxima. Int. J. Climatol., 26 (13), 1929–1936. [Google Scholar]
  • Feng S., Hu Q., Qian W., 2004. Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int. J. Climatol., 24 (7), 853–870. [Google Scholar]
  • Fraga H., Malheiro A., Santos J., 2014. Climate factors driving wine production in the Portuguese Minho region. Agric. For. Meteorol., 185, 26–36. [Google Scholar]
  • Fraga H., Santos J.A., 2017. Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Aust. J. Grape and Wine Research, 23 (2), 296–304. [Google Scholar]
  • Government of Canada, 2016. Glossary. Available at: http://climate.weather.gc.ca/glossary_e.html [Accessed December 18, 2016]. [Google Scholar]
  • Gu S., 2016. Growing degree hours - a simple, accurate, and precise protocol to approximate growing heat summation for grapevines. Int. J. Biometeorology, 60 (8), 1123–1134. [Google Scholar]
  • Jones G.V., 2012. A climate assessment for the Douro wine region: an examination for the past, present and future conditions for wine production, ADVID, Peso da Régua. Available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Climate+Assessment+for+the+Douro+Wine+Region:+An+Exa mination+of+the+Past,+Present,+and+Future+Climate+Conditions+for+Wine+Production#1 [Accessed February 14, 2014]. [Google Scholar]
  • Jones G.V., 2013. Uma Avaliação do Clima para a Região Demarcada do Douro: Uma análise das condições climáticas do passado, presente e futuro para a produção de vinho. ADVID - Associação para o Desenvolvimento da Viticultura, ed. [Google Scholar]
  • Jones G.V., Alves F., 2012. Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. Int. J. Global Warming, 4 (3/4), 383–406. [Google Scholar]
  • Kaemtz, L.F., Martins, C., Lalanne, L., 1845. A complete course of meteorology. C. V. Walker, ed., London: Hippolyte Baillière. [Google Scholar]
  • Ma Y., Guttorp P., 2013. Estimating daily mean temperature from synoptic climate observations. Int. J. Climatol., 33 (5), 1264–1269. [Google Scholar]
  • Moberg A., Bergström H., Krigsman J.R., Svanered O., 2002. Daily air temperature and pressure series for Stockholm (1756--1998). Climatic Change, 53 (1/3): 171–212. [Google Scholar]
  • Rolland C., 2003. Spatial and seasonal variations of air temperature lapse rates in Alpine regions. Journal of Climate, 16 (7), 1032–1046. [Google Scholar]
  • Sakellariou N.K., Kambezidis H.D., 2016. Improving the estimation of the true mean monthly and true mean annual air temperatures in Greece. Atmospheric Science Letters, 17 (1), 13–18. [Google Scholar]
  • Santos J., Malheiro A., 2011. Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. Int. J. Biometeorology, 55 (2), 119–131. [Google Scholar]
  • Sousa A.C.-R., 2015. Analyzing the Influence of the Douro Valley Weather on the Quality and Yield of Vintage Port. Porto. Available at: http://repositorioaberto.up.pt/bitstream/10216/78434/2/112947.pdf. [Google Scholar]
  • Stone P., Carlson J., 1979. Atmospheric lapse rate regimes and their parameterization. Journal of the Atmospheric Sciences, 36, 415–423. [Google Scholar]
  • US Naval Observatory, 2017. Sun or Moon Rise/Set Table for One Year. Astronomical Applications Department. Available at: http://aa.usno.navy.mil/data/docs/RS_OneYear.php [Accessed January 12, 2017]. [Google Scholar]
  • Van Leeuwen C., Garnier C., Agut C., Baculat B., Barbeau G., Besnard E., Bois B., Boursiquot J.-M., Chuine I., Dessup T., Dufourcq, T., Garcia-Cortazaz, I., Marguerit, E., Monamy, C., Koundourass S., Payan J.C., Parker A., Renouf V., Rodriguez-Lovelle B., Roby J. ., Tonietto J., Trambouze, W., 2008. Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate. In: VIIème Congrès International des Terroirs Viticoles - Comptes rendus - Volume 1, 222–227. [Google Scholar]
  • Wang X., 2011. RHtestsV3. Available at: http://cccma.seos.uvic.ca/cgibin/etccdi/main_programs/download_RHtest?a=RHtestsV3.r. [Google Scholar]
  • Weiss A., Hays C.J., 2005. Calculating daily mean air temperatures by different methods. Agric. For. Meteorol., 128 (1–2), 57–65. [Google Scholar]
  • World Meteorological Organization, 2014. Measurement of temperature. In: Guide to Meteorological Instruments and Methods of Observation. Geneve, Switzerland: WMO, p. 1128. [Google Scholar]
  • World Meteorological Organization, 2016. Meteoterm. Available at: http://wmo.multicorpora.net/MultiTransWeb/Web.mvc [Accessed December 18, 2016]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.