Open Access
Ciência Téc. Vitiv.
Volume 33, Number 1, 2018
Page(s) 1 - 14
Published online 14 March 2018
  • Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements, Irrigation and Drainage Paper 56. 300 p. United Nations FAO, Rome. [Google Scholar]
  • Baggiolini M., 1952. Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Revue romande d’Agriculture et d’Arboriculture 8, 4-6. [Google Scholar]
  • Carvalho L.C., Coito J.L., Colaço S., Sangiogo M., Amâncio S., 2015. Heat stress in grapevine: the pros and cons of acclimation. Plant, Cell, Environ., 38, 777-789. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho L.C., Coito J.L., Gonçalves E.F., Chaves M.M., Amâncio S., 2016. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biol., 18, 101-111. [CrossRef] [Google Scholar]
  • Castellarin S.D., Matthews M., Di Gaspero G., Gambetta G., 2007. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227, 101-112. [CrossRef] [PubMed] [Google Scholar]
  • Chapman D.M., Roby G., Ebeler S.E., Guinard J., Matthews M.A., 2005. Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Aust. J. Grape Wine Res., 11, 339-347. [CrossRef] [Google Scholar]
  • Chaves M.M., 2002. How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Ann. Bot., 89, 907-916. [CrossRef] [Google Scholar]
  • Chaves M.M., Maroco J.P., Pereira J.S., 2003. Understanding plant responses to drought - from genes to the whole plant. Func. Plant Biol., 303, 239-264. [CrossRef] [Google Scholar]
  • Conradie W.J., Carey V.A., Bonnardot V., Saayman D., Van Schoor L.H., 2002. Effect of Different Environmental Factors on the Performance of Sauvignon blanc Grapevines in the Stellenbosch / Durbanville Districts of South Africa, I. Geology, Soil, Climate, Phenology and Grape Composition. S. Afr. J. Enol. Vitic., 23, 78-91. [Google Scholar]
  • Creissen G., Firmin J., Fryer M., Kular B., Leyland N., Reynolds H., Pastori G., Wellburn F., Baker N., Wellburn A., Mullineaux P., 1999. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell, 11, 1277-1291. [CrossRef] [PubMed] [Google Scholar]
  • de Cortázar-Atauri I.G., Brisson N., Gaudillere J.P., 2009. Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int. J. Biometeorol., 53, 317-326. [CrossRef] [PubMed] [Google Scholar]
  • Deluc L.G., Quilici D.R., Decendit A., Grimplet J., Wheatley M.D., Schlauch K., Cramer G.R., 2009. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10, 212. doi:10.1186/1471-2164-10-212 [CrossRef] [PubMed] [Google Scholar]
  • Dodd I.C., 2009. Rhizosphere manipulations to maximize ‘crop per drop’ during deficit irrigation. J. Exp. Bot., 60, 2454-2459. [CrossRef] [PubMed] [Google Scholar]
  • Eichhorn K.W., Lorenz H., 1977. Phaenologische Entwicklungsstadien der Rebe. Deutsche Weinbau 1. [Google Scholar]
  • Fraga H., Santos J.A., Moutinho-Pereira J., Carlos C.,Silvestre J., Eiras-Dias J., Mota T., Malheiro A.C., 2016. Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J. Agric. Sci., 154, 795-811. [CrossRef] [Google Scholar]
  • Gaudillère J.-P., Van Leeuwen C., Ollat N., 2002. Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. J. Exp. Bot., 53, 757-763. [CrossRef] [PubMed] [Google Scholar]
  • Gouveia J., Lopes C., Pedroso V., Martins S., Rodrigues P., Alves I., 2012. Effect of irrigation on soil water depletion, vegetative growth, yield and berry composition of the grapevine variety Touriga Nacional. Ciência Téc.Vitiv., 27, 115-122. [Google Scholar]
  • Hsiao T.C., Xu L.K., 2000. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J. Exp. Bot., 51, 1595-1616. [CrossRef] [PubMed] [Google Scholar]
  • Intrigliolo D.S., Castel J.R., 2010. Response of grapevine cv. “Tempranillo” to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrigation Sci., 28, 113-125. [CrossRef] [Google Scholar]
  • IVV, 2011. Catálogo das castas para vinho cultivadas em Portugal, Vol. 1. Instituto da Vinha e do Vinho, I.P., MADRP (in Portuguese). Castro, R (coord.) [Google Scholar]
  • Knight H., Knight M.R., 2001. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci., 6, 262-267. [CrossRef] [PubMed] [Google Scholar]
  • Lopes C.M., 1994. Influência do sistema de condução no microclima do coberto, vigor e produtividade da videira (Vitis vinifera L.). PhD Thesis, Instituto Superior de Agronomia, University of Lisbon, Portugal, 205 p. [Google Scholar]
  • Lopes C.M., Santos T.P., Monteiro A., Rodrigues M.L., Costa J.M., Chaves M.M., 2011. Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Sci. Hort., 129, 603-612. [CrossRef] [Google Scholar]
  • Matthews M.A., Anderson M.M., 1988. Fruit ripening in Vitis vinifera L.: responses to seasonal water deficit. Am. J. Enol. Vitic., 39, 313-320. [Google Scholar]
  • Mccarthy M.G., 1997. The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Aust. J. Grape Wine Res., 3, 2-8. [CrossRef] [Google Scholar]
  • Mishra Y., Jänkänpää H.J., Kiss A.Z., Funk C., Schröder W.P., Jansson S., 2012. Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol., 12, 6. doi:10.1186/1471-2229-12-6 [CrossRef] [PubMed] [Google Scholar]
  • Okamura M., 1980. An improved method for determination of Lascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta, 103, 259-268. [CrossRef] [PubMed] [Google Scholar]
  • Oliveira A.F., Mameli M.G., de Pau L., Satta D., Nieddu G., 2013. Deficit Irrigation Strategies in Vitis vinifera L. cv. Cannonau under Mediterranean Climate. Part I - Physiological Responses, Growth, Yield and Berry Composition. S. Afr. J. Enol. Vitic., 34, 170-183. [Google Scholar]
  • Pellegrino A., Lebon E., Simonneau T., Wery J., 2005. Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Aust. J. Grape Wine Res., 11, 306-315. [CrossRef] [Google Scholar]
  • Pereira J.S., Chaves M.M., 1993. Plant water deficits in Mediterranean ecosystems. In: Plant responses to water deficits— from cell to community. Eds: Smith J.A.C., Griffiths H. Oxford, BIOS Scientific; 237-251 p. [Google Scholar]
  • Petrie P.R., Sadras V.O., 2008. Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Aust. J. Grape Wine Res., 14, 33-45. [CrossRef] [Google Scholar]
  • Pinheiro C., Chaves M.M., 2011. Photosynthesis and drought□: can we make metabolic connections from available data? J. Exp. Bot., 62, 869-882. [CrossRef] [PubMed] [Google Scholar]
  • Pinto C., Henriques M.O., Figueiredo J.P., David J.S., Abreu F.G., Pereira, J.S., Correia I., David T.S., 2011. Phenology and growth dynamics in Mediterranean evergreen oaks: Effects of environmental conditions and water relations. For. Ecol. Manag., 262, 500-508. [CrossRef] [Google Scholar]
  • Ramos M., Jones G.V., Yuste J., 2015. Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO (Spain) and relationships with climate. Int. J. Biometeorol. 59, 1849-1860. [CrossRef] [PubMed] [Google Scholar]
  • Rocheta M., Coito J., Ramos M., Carvalho L.C., Becker J., Carbonell-Bejerano P., Amâncio S., 2016. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions. BMC Plant Biol., 16, 224. [CrossRef] [PubMed] [Google Scholar]
  • Rodrigues M.L., Santos T.P., Rodrigues A.P., de Souza C.R., Lopes C.M., Maroco J.P., Pereira J.S., Chaves M.M., 2008. Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation. Func. Plant Biol., 35, 565-579. [CrossRef] [Google Scholar]
  • Romero P., Dodd I.C., Martinez-Cutillas A., 2012. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability. J. Exp. Bot., 63, 4071-4083. [CrossRef] [PubMed] [Google Scholar]
  • Richardson A.D., Duigan S.P., Berlyn G.P., 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol., 153, 185-194. [CrossRef] [Google Scholar]
  • Salón J.L., Chirivella C., Castel J.R., 2005. Response of cv. Bobal to Timing of Deficit Irrigation in Requena, Spain: Water Relations, Yield, and Wine Quality. Am. J. Enol. Vitic., 56, 1-8. [Google Scholar]
  • Santos T.P., Lopes C.M., Rodrigues M.L., Souza C.R., Maroco J.P., Pereira J.S., Silva J.R., Chaves M.M., 2003. Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Func. Plant Biol., 30, 663-671. [CrossRef] [PubMed] [Google Scholar]
  • Sharp R.E., Wu Y., Voetberg G.S., Saab I.N., LeNoble M.E., 1994. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. J. Exp. Bot., 45, 1743-1751. [CrossRef] [Google Scholar]
  • Vilela B.J., Carvalho L.C., Ferreira J., Amâncio S., 2007. Gain of function of stomatal movements in rooting Vitis vinifera L. plants: regulation by H2O2 is independent of ABA before the protruding of roots. Plant Cell Rep., 26, 2149-2157. [CrossRef] [PubMed] [Google Scholar]
  • Williams L.E., Grimes D.W., Phene C.J., 2009. The effects of applied water at various fractions of measured evapotranspiration on reproductive growth and water productivity of Thompson Seedless grapevines. Irrigation Sci., 28, 233-243. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.