Open Access
Ciência Téc. Vitiv.
Volume 31, Number 2, 2016
Page(s) 98 - 113
Published online 13 January 2017
  • Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. United Nations FAO, Rome, 300 p. [Google Scholar]
  • Basile B., Girona J., Behboudian M.H., Mata M., Rosello J., Ferré M., Marsal J., 2012. Responses of “Chardonnay” to deficit irrigation applied at different phenological stages: vine growth, must composition, and wine quality. Irrig. Sci., 30, 397–406. [CrossRef] [Google Scholar]
  • Bell S.J., Henschke P.A., 2005. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res., 11, 242–295. [CrossRef] [Google Scholar]
  • Bouzas-Cid Y., Falqué E., Orriols I., Trigo-Córdoba E., Díaz- Losada E., Fornos-Rivas D., Mirás-Avalos J.M., 2015. Amino acids profile of two Galician white grapevine cultivars (Godello and Treixadura). Ciência Téc. Vitiv., 30, 84–93. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cancela J.J., Trigo-Córdoba, E., Martínez E.M., Rey B.J., Bouzas- Cid Y., Fandiño M., Mirás-Avalos J.M., 2016. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric. Water Manage., 170, 99–109. [CrossRef] [Google Scholar]
  • Choné X., van Leeuwen C., Dubourdieu D., Gaudillère J.P., 2001. Stem water potential is a sensitive indicator of grapevine water status. Ann. Bot., 87, 477–483. [CrossRef] [Google Scholar]
  • Consello Regulador Ribeiro. 2016. (last accessed June 6th 2016). [Google Scholar]
  • Cortés S., Díaz E., 2011. Characterization of autochthonous monovarietal wines from red Brancellao L. cultivars. J. Food Compost. Anal., 24, 154–159. [CrossRef] [Google Scholar]
  • Cruz R., Lago A., Rial M.E., Díaz-Fierros F., Salsón S., 2009. Evolución recente do clima de Galicia. Tendencias observadas en variables meteorolóxicas. In: Evidencias e Impactos do Cambio Climático en Galicia. 19–58. Santiago de Compostela: Consellería de Medio Ambiente e Desenvolvemento Sostible. [Google Scholar]
  • de Souza C.R., Maroco J.P., dos Santos T.P., Rodríguez M.L., Lopes C.M., Pereira J.S., Chaves M.M., 2003. Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel). Funct. Plant Biol., 30, 653–662. [CrossRef] [PubMed] [Google Scholar]
  • Deloire A., Carbonneau A., Wang Z.P., Ojeda H., 2004. Vine and water a short review. J. Int. Sci. Vigne Vin, 38, 1–13. [Google Scholar]
  • dos Santos T.P., Lopes C.M., Rodrigues M.L., Souza C.R., Maroco J.P., Pereira J.S., Silva J.R., Chaves M.M., 2003. Partial rootzone drying: effectsongrowth and fruit quality of field-grown grapevines Vitis vinifera L.. Funct. Plant Biol., 30, 663–671. [CrossRef] [PubMed] [Google Scholar]
  • Dry P.R., Loveys B.R., McCarthy M.G., Stoll M., 2001. Strategic irrigation management in Australian vineyards. J. Int. Sci. Vigne Vin, 35, 129–139. [Google Scholar]
  • Fandiño M., Cancela J.J., Rey B.J., Martínez E.M., Rosa R.G., Pereira L.S., 2012. Using the dual-Kc approach to model evapotranspiration of Albariño vineyards (Vitis vinifera L. cv. Albariño) with consideration of active ground cover. Agric. Water Manag., 112, 75–87. [CrossRef] [Google Scholar]
  • Fraga H., Malheiro A.C., Moutinho-Pereira J., Cardoso R.M., Soares P.M.M., Cancela J.J., Pinto J.G., Santos J.A., 2014. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions. PLOS One, 9, e108078. [CrossRef] [PubMed] [Google Scholar]
  • Garde-Cerdán T., Lorenzo C., Lara J.F., Pardo F., Ancín- Azpilicueta C., Salinas M.R., 2009. Study of the evolution of nitrogen compounds during grape ripening. Application to differentiate grape varieties and cultivated systems. J. Agric. Food Chem., 57, 2410–2419. [CrossRef] [PubMed] [Google Scholar]
  • Glories Y., 1984. La couleur des vins rouges, 2eme partie. Connaiss. Vigne Vin, 18, 253–271. [Google Scholar]
  • Gómez-Alonso S., Hermosín-Gutiérrez I., García-Romero E., 2007. Simultaneous HPLC analysis of biogenic amines, amino acids and ammonium ion as aminoenone derivatives in wine and beer samples. J. Agric. Food Chem., 55, 608–613. [CrossRef] [PubMed] [Google Scholar]
  • Gouveia J., Lopes C.M., Pedroso V., Martins S., Rodrigues P., Alves I., 2012. Effect of irrigation on soil water depletion, vegetative growth, yield and berry composition of the grapevine variety Touriga Nacional. Ciência Téc. Vitiv., 27, 115–122. [Google Scholar]
  • Intrigliolo D.S., Castel J.R., 2009. Response of Vitis vinifera cv. ‘Tempranillo’ to partial rootzone drying in the field: water relations, growth, yield and fruit and wine quality. Agric. Water Manage., 96, 282–292. [CrossRef] [Google Scholar]
  • Intrigliolo D.S., Castel J.R., 2010. Response of grapevine cultivar ‘Tempranillo’ to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrig. Sci., 28, 113–125. [CrossRef] [Google Scholar]
  • Intrigliolo D.S., Pérez D., Risco D., Yeves A., Castel J.R., 2012. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig. Sci., 30, 339–349. [CrossRef] [Google Scholar]
  • IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC; Geneva, Switzerland, 151 pp. [Google Scholar]
  • Jackson D.I., Lombard P.B., 1993. Environmental and management practices affecting grape composition and wine quality: A review. Amer. J. Enol. Vitic., 44, 409–430. [Google Scholar]
  • Junquera P., Jiménez L., Linares R., Baeza P., Lissarrague J.R., 2012. Long-term effects of different irrigation strategies on yield components, vine vigour, and grape composition in cv. Cabernet sauvignon (Vitis vinifera L.). Irrig. Sci., 30, 351–361. [CrossRef] [Google Scholar]
  • Kliewer W.M., 1968. Changes in the concentration of free amino acids in grape berries during maturation. Am. J. Enol. Vitic., 19, 166–174. [Google Scholar]
  • Lanari V., Palliotti A., Sabbatini P., Stanley Howell G., Silvestroni O., 2014. Optimizing deficit irrigation strategies to manage vine performance and fruit composition of field-grown ‘Sangiovese’ (Vitis vinifera L.) grapevines. Sci. Hortic., 179, 239–247. [CrossRef] [Google Scholar]
  • Mirás-Avalos J.M., Mestas-Valero R.M., Sande-Fouz P., Paz- González A., 2009. Consistency analysis of pluviometric information in Galicia (NW Spain). Atmos. Res., 94, 629–640. [CrossRef] [Google Scholar]
  • Mirás-Avalos J.M., Trigo-Córdoba E., Bouzas-Cid Y., 2014. Does predawn water potential discern between irrigation treatments in Galician white grapevine cultivars? J. Int. Sci. Vigne Vin, 48, 123–127. [Google Scholar]
  • Ojeda H., 2008. L’irrigation de précision en fonction des particularités et les objectifs du vignoble. Cahier Technique Revue Française d’oenologie, 229, 1–8. [Google Scholar]
  • OIV, 2009. Compendium of International Methods of Wine and Must Analysis vols. 1 and 2. Paris, France: Office International de la Vigne et du Vin. [Google Scholar]
  • Ortega-Heras M., Pérez-Magariño S., Del-Villar-Garrachón V., González-Huerta C., Moro-González L.C., Guadarrama-Rodríguez A., Villanueva-Sánchez S., Gallo-González R., Martín de la Helguera S., 2014. Study of the effect of vintage, maturity degree and irrigation on the amino acid and biogenic amine content of a white wine from the Verdejo variety. J. Sci. Food Agric., 94, 2073–2082. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
  • Reynolds A.G., Lowrey W.D., Tomek L., Hakimi J., de Savigny C., 2007. Influence of irrigation on vine performance, fruit composition, and wine quality of Chardonnay in a cool, humid climate. Am. J. Enol. Vitic., 58, 217–228. [Google Scholar]
  • Richardson A.D., Duigan S.P., Berlyn G.P., 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol., 153, 185–194. [CrossRef] [Google Scholar]
  • Romero P., Fernéndez-Fernández J.I., Martínez-Cutillas A., 2010. Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. Am. J. Enol. Vitic., 61, 300–312. [CrossRef] [Google Scholar]
  • Sánchez-de-Miguel P., Baeza P., Junquera P., Lissarrague J.R., 2010. Vegetative development: total leaf area and surface area indexes. In: Methodologies and Results in Grapevine Research. Delrot, S., Medrano, H., Bavaresco, L., Grando, S. (Eds.), 31–44, Springer. [CrossRef] [Google Scholar]
  • Schneider C.H., 1989. Introduction à l’écologie viticole. Application aux systèmes de conduite. Bulletin de l’OIV, 701-702, 498–515. [Google Scholar]
  • Steele M.R., Gitelson A.A., Rundquist D.C., 2008. A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron. J., 100, 779–782. [CrossRef] [Google Scholar]
  • Swiegers J.H., Bartowsky P.A., Henschke P.A., Pretorius I.S., 2005. Yeast and bacterial modulation of wine aroma and flavor. Aus. J. Grape Wine Res., 11, 139–173. [CrossRef] [EDP Sciences] [Google Scholar]
  • Talaverano I., Valdés E., Moreno D., Gamero E., Mancha L., Vilanova M., 2016. The combined effect of water status and crop level on Tempranillo wine volatiles. J. Sci. Food Agric., doi: 10.1002/jsfa.7898 [Google Scholar]
  • Teszlák P., Kocsis M., Gaál K., Nikfardjam M.P., 2013. Regulatory effects of exogenous gibberelic acid (GA3) on water relations and CO2 assimilation among grapevine (Vitis vinifera L.) cultivars. Sci. Hortic., 159, 41–51. [CrossRef] [Google Scholar]
  • Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I., Mirás- Avalos J.M., 2014. Irrigation effects on the sensory perception of wines from three white grapevine cultivars traditional from Galicia (Albariño, Godello and Treixadura). Ciência Téc. Vitiv., 29, 71–80. [CrossRef] [EDP Sciences] [Google Scholar]
  • Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I., Mirás- Avalos J.M., 2015. Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain. Agric. Water Manage., 161, 20–30. [CrossRef] [Google Scholar]
  • van Leeuwen C., Tregoat O., Choné X., Bois B., Pernet D., Gaudillère J.-P., 2009. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Int. Sci. Vigne Vin, 43, 121–134. [Google Scholar]
  • Vilanova M., Campo E., Escudero A., Graña M., Cacho J., 2012. Volatile composition and sensory properties of Vitis vinifera red cultivars from North West Spain: Correlation between sensory and instrumental analysis. Anal. Chim. Acta, 720, 104–111. [CrossRef] [Google Scholar]
  • Williams L.E., Araujo F.J., 2002. Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. J. Amer. Soc. Hort. Sci., 127, 448–454. [Google Scholar]
  • Williams L.E., Trout T.J., 2005. Relationships among vine- and soil-based measures of water status in a Thompson seedless vineyard in response to high-frequency drip irrigation. Am. J. Enol. Vitic., 56, 357–366. [Google Scholar]
  • Zamora F., 2003. Elaboración y crianza del vino tinto: aspectos científicos y prácticos. Ed. Mundi-Prensa, Madrid, 225 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.