Open Access
Issue
Ciência Téc. Vitiv.
Volume 30, Number 1, 2015
Page(s) 9 - 20
DOI https://doi.org/10.1051/ctv/20153001009
Published online 07 August 2015
  • Afonso J.M., Monteiro A.M., Lopes C.M., Lourenço J., 2003. Enrelvamento do solo em vinha na região dos vinhos verdes. Três anos de estudo na casta ‘Alvarinho’. Ciência Téc. Vitiv., 18, 47–63. [Google Scholar]
  • Barroso J.M., 2002. A rega da vinha. Uma oportunidade ou um perigo para a qualidade do vinho do Alentejo? Vinea – Revista do vinho do Alentejo, 0, 10–13. [Google Scholar]
  • Cabrita M.J., Ricardo-da-Silva J., Laureano O., 2003. Os compostos polifenólicos das uvas e dos vinhos. In: Proceedings of I Seminário Internacional de Vitivinicultura, 24 - 25 September 2003, Ensenada, México, 61–101. [Google Scholar]
  • Carbonneau A., 2004. Incidência do stress hídrico e do calor sobre a fisiología da vinha e sobre a maturação da uva. Infowine, Internet J. Vitic. Enol. [accessed 10 September 2011 in www.infowine.com] [Google Scholar]
  • Celette F., Gaudin R., Gary C., 2008. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adopting of cover cropping. Europ. J. Agronomy, 29, 153–162. [CrossRef] [Google Scholar]
  • Celette F., Wery J., Chantelot E., Celette J., Gary C., 2005. Belowground interactions in a vine (Vitis vinifera L.) - tall fescue (Festuca arundinacea Shreb.) intercropping system: water relations and growth. Plant and Soil, 276, 205–217. [CrossRef] [Google Scholar]
  • Cifre J., Bota J., Escalona J.M., Medrano H., Flexas J., 2005. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). An open gate to improve water-use efficiency? Agric. Ecosyst. Environ., 106, 159–170. [CrossRef] [Google Scholar]
  • Cruz A., Botelho M., Silvestre J., Castro R., 2012. Soil management: introduction of tillage in a vineyard with a long-term natural cover. Ciência Téc. Vitiv., 27, 27–38. [Google Scholar]
  • De La Hera Orts M.L., Martínez-Cutillas A., López-Roca J.M., Gómez-Plaza E., 2005. Effect of moderate irrigation on grape composition during ripening. Span. J. Agric. Res., 3, 352–361. [CrossRef] [Google Scholar]
  • Deloire A., Vaudour E., Carey V., Bonnardot V., Van LeeuWen C., 2005. Grapevine responses to terroir: a global approach. J. Int. Sci. Vigne Vin, 39, 149–162. [Google Scholar]
  • Esteban M.A., Villanueva M.J., Lisarrague J.R., 2002. Relationships between different berry components in Tempranillo (Vitis vinifera L.) grapes from irrigated and non-irrigated vines during ripening. J. Sci. Food Agric., 82, 1136–1146. [CrossRef] [Google Scholar]
  • Flexas J., Galmés J., Gallé A., Gulías J., Pou A., Ribas-Carbo M., Medrano H., 2010. Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res., 16, 106–121. [CrossRef] [Google Scholar]
  • Furie J.C., 2010. Soil management in the Breede River Valley wine grape region, South Africa. 1. Cover crop performance and weed control. S. Afr. J. Enol. Vitic., 31, 14–21. [Google Scholar]
  • Girona J., Gelly M., Mata M., Arbonés A., Rufat J., Marsal J., 2005. Peach tree response to single and combined deficit irrigation regimes in deep soils. Agric. Water Manag., 72, 97–108. [CrossRef] [Google Scholar]
  • Goodwin I., 2002. Managing water stress in grape vines in Greater Victoria. Agriculture Notes, November 2002. 4 p. Department of primary Industries, Victoria. [Google Scholar]
  • Gouveia J., Lopes C.M., Pedroso V., Martins S., Rodrigues P., Alves I., 2012. Effect of irrigation on soil water depletion, vegetative growth, yield and berry composition of the grapevine variety Touriga Nacional. Ciência Téc. Vitiv., 27, 115–122. [Google Scholar]
  • INRB – Instituto Nacional de Recursos Biológicos, 2011. Aragonez. [accessed 7 September 2011 in http://www.inrb.pt] [Google Scholar]
  • Keller M., 2005. Estratégias de irrigação de uvas brancas e tintas. 33rd Annual New York Wine Industry Workshop. Infowine, Internet J. Vitic. Enol. [accessed 10 September 2011 in www.infowine.com] [Google Scholar]
  • Keller M., 2010. Managing grapevines to optimize fruit development in a challenging environment: a climate change primer for viticulturists. Aust. J. Grape Wine Res., 16, 56–69. [CrossRef] [Google Scholar]
  • Koundouras S., Marinos V., Gkoulioti A., Kotseridis Y., Van Leeuwen C., 2006. Influence of vineyard location and vine water status on fruit maturation on nonirrigated Cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J. Agric. Food Chem., 54, 5077–5086. [CrossRef] [PubMed] [Google Scholar]
  • Laget F., Tondut J.L., Deloire A., Kelly M.T., 2008. Climate trends in a specific Mediterranean viticultural area between 1950 and 2006. J. Int. Sci. Vigne Vin, 42, 113–123. [Google Scholar]
  • Lopes C.M., Monteiro A., Machado J.P., Fernandes N., Araújo A., 2008. Cover cropping in a sloping non-irrigated vineyard: II – Effects on vegetative growth, yield, berry and wine quality of ‘Cabernet Sauvignon’ grapevines. Ciência Téc. Vitiv., 23, 37–43. [Google Scholar]
  • Lopes C.M., Santos T.P., Monteiro A., Rodrigues M.L., Costa J.M., Chaves M.M., 2011. Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Sci. Hortic., 129, 603–612. [CrossRef] [Google Scholar]
  • Malheiro A.C., Santos J.A., Fraga H., Pinto J., 2010. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res., 43, 163–177. [CrossRef] [Google Scholar]
  • Martínez-Cutillas A., Romero P., Fernández J.I., 2007. Técnicas de riego deficitario en el cultivo de la vid. Vida Rural, 244. [Google Scholar]
  • Medrano H., Escalona J.M., Cifre J., Bota J., Flexas J., 2003. A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of wáter availability from leaf photosynthesis to grape yield and quality. Funct. Plant Biol., 30, 607–619. [CrossRef] [Google Scholar]
  • Monteiro A, Lopes CM, 2007. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ., 121, 336–342. [CrossRef] [Google Scholar]
  • Miller D.E., 1986. Root systems in relation to stress tolerance. HortScience, 21, 963–970. [Google Scholar]
  • OIV, 2008. World Statistics. OIV Report on the state of the vitivinivulture world market. Organisation International de la Vigne et du Vin, Paris. [Google Scholar]
  • OIV, 2014. Compendium of International Methods of Analysis of Wines and Musts (2 vol.). Organisation Internationale de la Vigne et du Vin, Paris. [Google Scholar]
  • Ojeda H., 2007a. Riego cualitativo de precisión en la vid. Revista Enologia, 1, 14–17. [Google Scholar]
  • Ojeda H., 2007b. Como se relaciona la calidad de la uva y del vino con el rendimiento del viñedo? Revista Enologia, 6. [Google Scholar]
  • Ojeda H., Andary C., Kraeva E., Carbonneau A., Deloire A., 2002. Influence of pre and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growyh of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic., 53, 261–267. [Google Scholar]
  • Olesen J.O., Bindi M., 2002. Consequences of climate change for European agricultural productivity, land use and policy. Europ. J. Agronomy, 16, 239–262. [CrossRef] [Google Scholar]
  • Oliveira M., 1995. Efeitos da disponibilidade de água no solo nas produções da casta Touriga Francesa na Região Demarcada do Douro (Cima-Corgo). Ciência Tec. Vitiv., 12, 59–71. [Google Scholar]
  • Pacheco C.A., 1989. Influência de técnicas de não mobilização e de mobilização sobre aspectos estruturais e hídricos de solos comvinha, bem como sobre o respectivo sistema radical. Consequências das relações hídricas solo-vinha na produção. 423 p. Ph.D Dissertation, Instituto Superior de Agronomia, Universidade Técnica de Lisboa. [Google Scholar]
  • Payan J.C., Salançon E., 2004. Definir o regime hídrico das parcelas. Infowine, Internet J. .Vitic. Enol. [accessed 10 September 2011 in www.infowine.com] [Google Scholar]
  • Pellegrino A., Gozé E., Lebon E., Wery J., 2006. A model-based diagnosis tool to evaluate the water stress experienced by grapevine in field sites. Europ. J. Agronomy, 25, 49–59. [CrossRef] [Google Scholar]
  • Reynolds A.G., Naylor A.P., 1994. ‘Pinot noir’ and ‘Riesling’ grapevines respond to water stress duration and soil water-holding capacity. Hortic. Sci., 29, 1505–1510. [Google Scholar]
  • Tomaz A., 2012. La alimentación hídrica de la variedad Aragonez (Vitis vinífera L.) en vertissuelos regados, con y sin cultivo de cobertura: efectos del riego en la producción y en la dinámica de extracción de agua. 196 p. Ph.D Dissertation, Universidad de Extremadura. [Google Scholar]
  • Tonietto J., Carbonneau A., 2004. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. Forest Meteo., 124, 81–97. [CrossRef] [Google Scholar]
  • Trambouze W., Voltz M., 2001. Measurement and modelling of the transpiration of a Mediterranean vineyard. Agric. Forest Meteo., 107, 153–166. [CrossRef] [Google Scholar]
  • Wample R.L., Smithyman R., 2002. Regulated deficit irrigation as a water management strategy in Vitis vinifera production. In: Deficit Irrigation Practices. 89–100. Water Report, 22. Rome: Food and Agriculture Organization of the United Nations. [Google Scholar]
  • Wheaton A.D., McKenzie B.M., Tisdall J.M., 2008. Management to increase the depth of soft soil improves soil conditions and grapevine performance in an irrigated Vineyard. Soil Till. Res., 98, 68–80. [CrossRef] [Google Scholar]
  • Williams L.E., Grimes D.W., Phene C.J., 2010. The effects of applied water at various fractions of measured evapotranspiration on reproductive growth and water productivity of Thompson Seedless grapevines. Irrig. Sci., 28, 233–243. [CrossRef] [Google Scholar]
  • Winkler A.J., Cook J.A., Kliewer W.M., Lider L.A., 1974. General viticulture. Revised and enlarged edition. 710 p. University of California Press, London. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.