Open Access
Review
Issue |
Ciência Téc. Vitiv.
Volume 40, Number 1, 2025
|
|
---|---|---|
Page(s) | 39 - 52 | |
DOI | https://doi.org/10.1051/ctv/ctv2025400139 | |
Published online | 08 April 2025 |
- Ahmed Z., Gui D., Qi Z., Liu Y., Liu Y., Azmat M., 2022. Agricultural system modeling: current achievements, innovations, and future roadmap. Arab. J. Geosci., 15. [Google Scholar]
- Alibabaei K., Assunção E., Gaspar P. D., Soares V. N. G. J., Caldeira J. M. L. P., 2022. Real-Time Detection of Vine Trunk for Robot Localization Using Deep Learning Models Developed for Edge TPU Devices. Future Internet, 14, 199. [CrossRef] [Google Scholar]
- Antle J. M., Jones J. W., Rosenzweig C., 2017. Next generation agricultural system models and knowledge products: Synthesis and strategy. Agric. Syst., 155, 179–185. [Google Scholar]
- Araújo S. O., Peres R. S., Ramalho J. C., Lidon F., Barata J., 2023. Machine Learning Applications in Agriculture: Current Trends, Challenges, and Future Perspectives. Agron., 13. [Google Scholar]
- Asseng S., Zhu Y., Basso B., Wilson T., Cammarano D., 2014. Simulation Modeling: Applications in Cropping Systems. In Encyclopedia of Agriculture and Food Systems, 102–112. Elsevier. [CrossRef] [Google Scholar]
- Bhandari S., Bishnu, Y., Kumar Y. P., Vivek L., Sudip K., 2024. ‘Exploring Agroecological Approaches for Sustainable Agriculture and Rural Development: A Comprehensive Review’. Asian J. Res. Agric. For. 10, 79–90. [CrossRef] [Google Scholar]
- Biasi R., Brunori E., Ferrara C., Salvati L., 2019. Assessing Impacts of Climate Change on Phenology and Quality Traits of Vitis vinifera L.: The Contribution of Local Knowledge. Plants 8. [Google Scholar]
- Biddappa C. B., V Dr. S., 2024. Crop Yield Prediction on Agriculture Using Machine Learning. Inter. J. Res. Pub. Rev., 5, 165–167. [CrossRef] [Google Scholar]
- Boote K. J., Jones J. W., Pickering N. B., 1996. Potential Uses and Limitations of Crop Models. Agron. J., 88, 704–716. [CrossRef] [Google Scholar]
- Bucur G. M., Dejeu L., 2022. Research on Adaptation Measures of Viticulture to Climate Change: Overview. Scientific Papers. Series B, Horticulture, LXVI, 177–190. [Google Scholar]
- Chuine I., Cortazar-Atauri I. G. de, Kramer K., Hänninen H., 2013. Plant Development Models. In Phenology an Integrative environmental science, 275–278. Springer, Dordrecht. [CrossRef] [Google Scholar]
- Cola G., Mariani L., Salinari F., Civardi S., Bernizzoni F., Gatti M., Poni S., 2014. Description and testing of a weather-based model for predicting phenology, canopy development and source-sink balance in Vitis vinifera L. cv. Barbera. Agric. For. Meteorol., 184, 117–136. [Google Scholar]
- Costa R., Fraga H., Fonseca A., Cortázar-Atauri I. G. De, Val M. C., Carlos C., Reis S., Santos J. A., 2019. Grapevine Phenology of cv. Touriga Franca and Touriga Nacional in the Douro Wine Region: Modelling and Climate Change Projections. Agron., 9. [Google Scholar]
- Costa R., Fraga H., Malheiro A. C., Santos J. A., 2015. Application of crop modelling to portuguese viticulture: Implementation and added-values for strategic planning. Ciênc. Téc. Vitivinicola, 30, 29–42. [Google Scholar]
- Crespo N., Pádua L., Santos J. A., Fraga H., 2024. Satellite Remote Sensing Tools for Drought Assessment in Vineyards and Olive Orchards: A Systematic Review. Remote Sens., 16, 2040. [CrossRef] [Google Scholar]
- Ding Y., Wang L., Li Y., Li D., 2018. Model predictive control and its application in agriculture: A review. Comput. Electron. Agric., 151, 104–117. [Google Scholar]
- Duarte J. B., Brinca P., Gonçalves M. J., 2022. Setor do Vinho - Avaliação de impacto socioenonómico em portugal. [Google Scholar]
- Elufioye O. A., Chinedu U.I., Olubusola O, Favour O.U., Noluthando Z.M., 2024. Ai-Driven Predictive Analytics in Agricultural Supply Chains: A Review: Assessing the Benefits and Challenges of Ai in Forecasting Demand and Optimizing Supply in Agriculture. Comput. Sci. IT Res. J., 5, 473–497. [Google Scholar]
- FAOSTAT, 2020. The State of Food and Agriculture 2020 Overcoming water challenges in agriculture. Rome [Google Scholar]
- FAOSTAT, 2023. Land statistics 2001-2022 Global, regional and country trends. [Google Scholar]
- Ferreira C. S. S., Veiga A., Caetano A., Gonzalez-Pelayo O., Karine-Boulet A., Abrantes N., Keizer J., Ferreira A. J. D., 2020. Assessment of the Impact of Distinct Vineyard Management Practices on Soil Physico-Chemical Properties. Air, Soil and Water Res., 13. [Google Scholar]
- Ferro M. V., Catania P., 2023. Technologies and Innovative Methods for Precision Viticulture: A Comprehensive Review. Horticulturae, 9, 399. [CrossRef] [Google Scholar]
- Fraga H., Cortázar Atauri I. G. de, Malheiro A. C., Moutinho-Pereira J., Santos J. A., 2017. Viticulture in Portugal: A review of recent trends and climate change projections. OENO One, 51, 61. [CrossRef] [Google Scholar]
- Fraga H., Costa R., Moutinho-Pereira J., Correia C. M., Dinis L. T., Gonçalves I., Silvestre J., Eiras-Dias J., Malheiro A. C., Santos J. A., 2015. Modeling phenology, water status, and yield components of three Portuguese grapevines using the STICS crop model. Am. J. Enol. Vitic., 66, 482–491. [CrossRef] [Google Scholar]
- Fraga H., Freitas T. R., Moriondo M., Molitor D., Santos J. A., 2024. Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach. Land, 13, 749. [CrossRef] [Google Scholar]
- Fraga H., García de Cortázar Atauri I., Malheiro A. C., Santos J. A., 2016a. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Chang. Biol. 22, 3774–3788. [CrossRef] [PubMed] [Google Scholar]
- Fraga H., Malheiro A. C., 2013. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Inter. J. Biometeorol., 57, 909–925. [CrossRef] [PubMed] [Google Scholar]
- Fraga H., Malheiro A. C., Moutinho-Pereira J., Santos J. A., 2012. An overview of climate change impacts on European viticulture. Food Energy Secur., 1, 94–110. [CrossRef] [Google Scholar]
- Fraga H., Santos J. A., Moutinho-Pereira J., Carlos C., Silvestre J., Eiras-Dias J., Mota T., Malheiro A. C., 2016b. Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J. Agric. Sci., 154, 795–811. [CrossRef] [Google Scholar]
- Gil E., 2021. Vítivinicultura e Mudanças Climáticas: Um estudo sobre as Regiões do Alentejo e Vinhos Verdes sob a ótica da sustentabilidade. Faculdade de Economia da Universidade do Porto, Porto. [Google Scholar]
- Hall A., Blackman J., 2019. Modelling within-region spatiotemporal variability in grapevine phenology with high resolution temperature data. OENO One, 53, 147–159. [CrossRef] [Google Scholar]
- Hansen J., Ruedy R., Sato M., Lo K., 2020. World of Change: Global Temperatures. Rev. Geophys., 48. [Google Scholar]
- Hussein A. H. A., Jabbar K. A., Mohammed A., Jasim L., 2024. Harvesting the Future: AI and IoT in Agriculture. E3S Web of Conferences, 477. [Google Scholar]
- Jones J. W., Antle J. M., Basso B., Boote K. J., Conant R. T., Foster I., Godfray H. C. J., 2017. Brief history of agricultural systems modeling. Agric. Syst., 155, 240–254. [CrossRef] [Google Scholar]
- Kamilaris A., Prenafeta-Boldú F. X., 2018. Deep learning in agriculture: A survey. Comput. Electron. Agric., 147, 70–90. [CrossRef] [Google Scholar]
- Kasimati A., Espejo-Garcia B., Vali E., Malounas I., Fountas S., 2021. Investigating a Selection of Methods for the Prediction of Total Soluble Solids Among Wine Grape Quality Characteristics Using Normalized Difference Vegetation Index Data From Proximal and Remote Sensing. Front. Plant. Sci., 12, 683078. [CrossRef] [Google Scholar]
- Katzin D., Henten E. J. van, Mourik S. van, 2022. Processbased greenhouse climate models: Genealogy, current status, and future directions. Agric. Syst., 198, 103388. [Google Scholar]
- Khaki S., Wang L., 2019. Crop yield prediction using deep neural networks. Front. Plant. Sci., 10, 452963. [CrossRef] [Google Scholar]
- Knowling M. J., Bennett B., Ostendorf B., Westra S., Walker R. R., Pellegrino A., Edwards E. J., Collins C., Pagay V., Grigg D., 2021. Bridging the gap between data and decisions: A review of process-based models for viticulture. Agric. Syst. 193, 103209. [Google Scholar]
- Kontogiannis S., Koundouras S., Pikridas C., 2024. Proposed Fuzzy-Stranded-Neural Network Model That Utilizes IoT Plant-Level Sensory Monitoring and Distributed Services for the Early Detection of Downy Mildew in Viticulture. Computers, 13. [Google Scholar]
- Kovács E., Puskás J., Pozsgai A., Kozma K., 2018. Shift in the annual growth cycle of grapevines (Vitis vinifera L.) in West Hungary. Appl. Ecol. Environ. Res., 16, 2029–2042. [CrossRef] [Google Scholar]
- Leolini L., Costafreda-Aumedes S., Santos J. A., Menz C., Fraga H., Molitor D., Merante P., 2020. Phenological Model Intercomparison for Estimating Grapevine Budbreak Date (Vitis vinifera L.) in Europe. Appl. Sci., 10, 3800. [CrossRef] [Google Scholar]
- Liakos K. G., Busato P., Moshou D., Pearson S., Bochtis D., 2018. Machine Learning in Agriculture: A Review. Sensors, 18, 2674. [CrossRef] [Google Scholar]
- Malheiro A. C., Campos R., Fraga H., Eiras-Dias J., Silvestre J., Santos J. A., 2013. Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. OENO One, 47, 287–299. [CrossRef] [Google Scholar]
- Martre P., Wallach D., Asseng S., Ewert F., Jones J. W., Rötter R. P., Boote K. J., 2015. Multimodel ensembles of wheat growth: many models are better than one. Glob. Chang. Biol., 21, 911–925. [CrossRef] [PubMed] [Google Scholar]
- Messina C. D., Cooper M., Reynolds M., Hammer G. L., 2020. Crop science: A foundation for advancing predictive agriculture. Crop Sci., 60, 544–546. [Google Scholar]
- Mosedale J. R., Abernethy K. E., Smart R. E., Wilson R. J., Maclean I. M. D., 2016. Climate change impacts and adaptive strategies: lessons from the grapevine. Glob. Chang. Biol., 22, 3814–3828. [CrossRef] [Google Scholar]
- Mosedale J. R., Wilson R. J., Maclean I. M. D., 2015. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions. PLoS One, 10. [Google Scholar]
- Nesbitt A., Dorling S., Jones R., Smith D. K. E., Krumins M., Gannon K. E., Dorling L., Johnson Z., Conway D., 2022. Climate change projections for UK viticulture to 2040: a focus on improving suitability for Pinot noir. OENO One, 56, 69–87. [CrossRef] [Google Scholar]
- Nowak B., 2021. Precision Agriculture: Where do We Stand? A Review of the Adoption of Precision Agriculture Technologies on Field Crops Farms in Developed Countries. Agri. Res., 10, 515–522. [Google Scholar]
- Nti I. K., Zaman A., Nyarko-Boateng O., Adekoya A. F., Keyeremeh F., 2023. A predictive analytics model for crop suitability and productivity with tree-based ensemble learning. Dec. Anal. J., 8, 100311. [Google Scholar]
- OIV, 2024. State of the World Vine and Wine Sector in 2023. [Google Scholar]
- Ollat N., Leeuwen C. van, Cortazar-Atauri I. G. de, Touzard J.-M., 2017. The challenging issue of climate change for sustainable grape and wine production. OENO One, 51, 59–60. [CrossRef] [Google Scholar]
- Parker A. K., Cortázar-Atauri I. G. de, Trought M. C. T., Destrac A., Agnew R., Sturman A., Leeuwen C. van, 2020. Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models. OENO One, 54, 955–974. [CrossRef] [Google Scholar]
- Pasley H., Brown H., Holzworth D., Whish J., Bell L., Huth N., 2023. How to build a crop model. A review. Agron. Sustain. Dev., 43, 1–12. [CrossRef] [Google Scholar]
- Piña-Rey A., Ribeiro H., Fernández-González M., Abreu I., Javier Rodríguez-Rajo F., 2021. Phenological Model to Predict Budbreak and Flowering Dates of Four Vitis vinifera L. Cultivars Cultivated in DO. Ribeiro (North-West Spain). Plants, 10, 502. [CrossRef] [PubMed] [Google Scholar]
- Rességuier L. de, Mary S., Roux R. Le, Petitjean T., Quénol H., Leeuwen C. van, 2020. Temperature Variability at Local Scale in the Bordeaux Area. Relations With Environmental Factors and Impact on Vine Phenology. Front. Plant. Sci., 11, 521085. [Google Scholar]
- Rodrigues P., Pedroso V., Reis S., Yang C., Santos J. A., 2022. Climate change impacts on phenology and ripening of cv. Touriga Nacional in the Dão wine region, Portugal. Inter. J. Climatol., 42, 7117–7132. [CrossRef] [Google Scholar]
- Rossum G. van, 2007. Python Programming Language, in USENIX Annual Technical Conference, California. [Google Scholar]
- Ruml M., Korać N., 2020. Phenological Models for Predicting the Budburst and Flowering Date of Grapevine. Агрознање, 21. [Google Scholar]
- Ruml M., Korac N., Vujadinovic M., Vukovic A., Ivaniševic D., 2016. Response of grapevine phenology to recent temperature change and variability in the wineproducing area of Sremski Karlovci, Serbia. J. Agric. Sci., 154, 186–206. [CrossRef] [Google Scholar]
- Salazar-Rojas A., Castro-Huerta R., Altieri M., 2023. The main agroecological structure, a methodology for the collective analysis of the Mediterranean agroecological landscape of San Clemente, Region del Maule, Chile. Front. Sustain. Food. Syst., 7, 1241648. [CrossRef] [Google Scholar]
- Santos J. A., Fraga H., Malheiro A. C., Moutinho-Pereira J., Dinis L. T., Correia C., Moriondo M., 2020a. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci., 10, 3092. [CrossRef] [Google Scholar]
- Santos M., Fonseca A., Fraga H., Jones G. V., Santos J. A., 2020b. Bioclimatic conditions of the Portuguese wine denominations of origin under changing climates. Inter. J. Climatol., 40, 927–941. [CrossRef] [Google Scholar]
- Saxena L., Armstrong L., 2014. A survey of image processing techniques for agriculture. Research outputs 2014 to 2021. [Google Scholar]
- Schmidt D., Kahlen K., Bahr C., Friedel M., 2022. Towards a Stochastic Model to Simulate Grapevine Architecture: A Case Study on Digitized Riesling Vines Considering Effects of Elevated CO2. Plants, 11, 801. [CrossRef] [PubMed] [Google Scholar]
- Seng K. P., Ang L. M., Schmidtke L. M., Rogiers S. Y., 2018. Computer vision and machine learning for viticulture technology. IEEE Access, 6, 67494–67510. [CrossRef] [Google Scholar]
- Sirnik I., Quénol H., Jiménez-Bello M. Á., Manzano J., Roux R. Le, 2018. Viticulture under climate change impact: future climate and irrigation modelling. E3S Web of Conferences, 50, 01041. [CrossRef] [EDP Sciences] [Google Scholar]
- Tardieu F., Cabrera-Bosquet L., Pridmore T., Bennett M., 2017. Plant Phenomics, From Sensors to Knowledge. Curr. Biol., 27, 770-783. [Google Scholar]
- Tripathi P., Kumar N., Rai M., Khan A., 2022. Applications of Deep Learning in Agriculture. In Artificial Intelligence Applications in Agriculture and Food Quality Improvement. IGI Global. 17–28. [Google Scholar]
- United Nations, 2024. World Population Prospects. [Google Scholar]
- Venios X., Korkas E., Nisiotou A., Banilas G., 2020. Grapevine Responses to Heat Stress and Global Warming. Plants, 9, 1–15. [Google Scholar]
- Verdugo-Vásquez N., Acevedo-Opazo C., Valdés-Gómez H., Araya-Alman M., Ingram B., García de Cortázar-Atauri I., Tisseyre B., 2016. Spatial variability of phenology in two irrigated grapevine cultivar growing under semi-arid conditions. Precis. Agric., 17, 218–245. [CrossRef] [Google Scholar]
- Wallach D., Makowski D., Jones J. W., Brun F., 2019. Working with Dynamic Crop Models Methods, Tools and Examples for Agriculture and Environment. Academic Press. [Google Scholar]
- Wallach D., Mearns L. O., Ruane A. C., Rötter R. P., Asseng S., 2016. Lessons from climate modeling on the design and use of ensembles for crop modeling. Clim. Change, 139, 551–564. [Google Scholar]
- Webster J., Watson R. T., 2002. Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26, iii-xiii. [Google Scholar]
- Xiao D., Shi W., 2023. Modeling the Adaptation of Agricultural Production to Climate Change. Agri., 13, 414. [Google Scholar]
- Zhao W., Wang M., Pham V. T., 2023. Unmanned Aerial Vehicle and Geospatial Analysis in Smart Irrigation and Crop Monitoring on IoT Platform. Mob. Info. Sys., 2023. [Google Scholar]
- Zhou X., Kono Y., Win A., Matsui T., Tanaka T. S. T., 2021. Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches. Plant Prod. Sci., 24, 137–151 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.