Open Access
Ciência Téc. Vitiv.
Volume 38, Number 2, 2023
Page(s) 82 - 94
Published online 26 July 2023
  • Agarwal C., Veluri R., Kaur M., Chou S.C., Thompson J. A., Agarwal R., 2007. Fractionation of high molecular weight tannins in grape seed extract and identification of procyanidin B2-3,3′-di-O-gallate as a major active constituent causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells. Carcinogenesis, 28, 1478–1484. [CrossRef] [PubMed] [Google Scholar]
  • Bitzer Z.T., Glisan S.L., Dorenkott M.R., Goodrich K.M., Ye L., O’Keefe S.F., Lambert J.D., Neilson A.P., 2015. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. J Nutr Biochem., 26, 827–831. [CrossRef] [Google Scholar]
  • Chang X., Dong S., Bai W., Di Y., Gu R., Liu F., Zhao B., Wang Y., Liu X., 2021. Methylated Metabolites of Chicoric Acid Ameliorate Hydrogen Peroxide (H2O2)-Induced Oxidative Stress in HepG2 Cells. J. Agric. Food Chem., 69, 2179–2189. [CrossRef] [PubMed] [Google Scholar]
  • Das G., A., Patra J.K., A., Shin H.-S., 2020. Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies. Mater. Sci. Eng. C.,114, 111011. [CrossRef] [Google Scholar]
  • Ezzat H.M., Elnaggar Y., Abdallah O.Y., 2019. Improved oral bioavailability of the anticancer drug catechin using chitosomes: Design, in-vitro appraisal and in-vivo studies. Int.J.Pharn., 565, 488–498. [CrossRef] [Google Scholar]
  • Gao Y., Wu Y., 2022. Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int. J. Biol. Macromol., 203, 379–388. [CrossRef] [Google Scholar]
  • He S., Cui X., Khan A., Liu Y., Wang Y., Cui Q., Zhao T., Cao J., Cheng G., 2021. Activity Guided Isolation of Phenolic Compositions from Anneslea fragrans Wall and Their Cytoprotective Effect against Hydrogen Peroxide Induced Oxidative Stress in HepG2 Cells. Molecules, 26, 3690. [CrossRef] [PubMed] [Google Scholar]
  • Hua Y., Wei Z., Xue C., 2021. Chitosan and its composites-based delivery systems: advances and applications in food science and nutrition sector. Crit Rev Food Sci Nutr., 18, 1–20. [Google Scholar]
  • Jadach B., Świetlik W., Froelich A., 2022. Sodium Alginate as a Pharmaceutical Excipient: Novel Applications of a Well-known Polymer. J. Pharm Sci., 111, 1250–1261. [CrossRef] [Google Scholar]
  • Karavelioglu Z., Cakir-Koc R., 2021. Preparation of chitosan nanoparticles as Ginkgo Biloba extract carrier: In vitro neuroprotective effect on oxidative stress-induced human neuroblastoma cells (SH-SY5Y). Int. J. Biol. Macromol., 192, 675–683. [CrossRef] [Google Scholar]
  • Li F., Jin H., Xiao J., Yin X., Liu X., Li D., Huang Q., 2018. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res Int., 111, 351–360. [CrossRef] [Google Scholar]
  • Lopes M., Aniceto D., Abrantes M., Simões S., Branco F., Vitória I., Botelho M.F., Seiça R., Veiga F., Ribeiro, A., 2017. In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. Eur J Pharm Biopharm., 113, 88–96. [CrossRef] [Google Scholar]
  • Luo L., Cui Y., Cheng J., Fang B., Wei Z., Sun B., 2018. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid. Food Chem., 256, 203–211. [CrossRef] [Google Scholar]
  • Luong P.H., Nguyen T.C., Pham T.D., Tran D.M.T., Ly T.N.L., Vu Q.T., Tran T.K.N., Thai H., 2021. Preparation and Assessment of Some Characteristics of Nanoparticles Based on Sodium Alginate, Chitosan, and Camellia chrysantha Polyphenols. Int J Polym Sci., 2021, (5581177), 1–11. [CrossRef] [Google Scholar]
  • Marcato P.D., Adami L.F., Barbosa R.D., Melo P.S., Ferreira I., Paula L.B., Durán N., Seabra A.B., 2013. Development of a Sustained-release System for Nitric Oxide Delivery using Alginate/Chitosan Nanoparticles. Curr Nanosci., 9, 1–7. [Google Scholar]
  • Rajapaksha D., Shimizu N., 2020. Valorization of spent black tea by recovery of antioxidant polyphenolic compounds: Subcritical solvent extraction and microencapsulation. Food Sci. Nutr., 8, 4297–4307. [CrossRef] [Google Scholar]
  • Sathiyaseelan A., Saravanakumar K., Jayalakshmi J., Gopi M., Shajahan A., Barathikannan K., Kalaichelvan P.T., Wang M.H., 2020. Trigonelline-loaded chitosan nanoparticles prompted antitumor activity on glioma cells and biocompatibility with pheochromocytoma cells. Int. J. Biol. Macromol., 163, 36–43. [CrossRef] [Google Scholar]
  • Shishir M.R., Karim N., Gowd V., Xie J., Zheng X., Chen W., 2019. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocoll., 95, 432–444. [CrossRef] [Google Scholar]
  • Shishir M., Karim N., Xie J., Rashwan A.K., Chen W., 2020. Colonic delivery of pelargonidin-3-O-glucoside using pectin-chitosan-nanoliposome: Transport mechanism and bioactivity retention. Int. J. Biol. Macromol., 159, 341–355. [CrossRef] [Google Scholar]
  • Soltanzadeh M., Peighambardoust S.H., Ghanbarzadeh B., Mohammadi M., Lorenzo J.M., 2021. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. Int. J. Biol. Macromol., 192, 1084–1097. [CrossRef] [Google Scholar]
  • Suda M., Katoh M., Toda K., Matsumoto K., Kawaguchi K., Kawahara S., Hattori Y., Fujii H., Makabe H., 2013. Syntheses of procyanidin B2 and B3 gallate derivatives using equimolar condensation mediated by Yb(OTf)3 and their antitumor activities. Bioorganic Med. Chem. Lett., 23, 4935–4939. [CrossRef] [Google Scholar]
  • Sun B.S., Ricardo-da-Silva J.M., Spranger M.I., 2001. Quantification of catechins and proanthocyanidins in several Portuguese grapevine varieties and red wines. Ciência Téc. Vitiv., 16, 23–34. [Google Scholar]
  • Sun B.S., Spranger M.I., 2005. Review: quantitative extraction and analysis of grape and wine proanthocyanidins and stilbenes. Ciência Téc. Vitiv., 20, 59–91. [Google Scholar]
  • Thomas D., KurienThomas K., Latha M.S., 2020. Preparation and evaluation of alginate nanoparticles prepared by green method for drug delivery applications. Int. J. Biol. Macromol., 154, 888–895. [CrossRef] [Google Scholar]
  • Tyagi A., Raina K., Shrestha S.P., Miller B., Thompson J.A., Wempe M.F., Agarwal R., Agarwal C., 2014. Procyanidin B2 3,3(″)-di-O-gallate, a biologically active constituent of grape seed extract, induces apoptosis in human prostate cancer cells via targeting NF-κB, Stat3, and AP1 transcription factors. Nutr Cancer., 66, 736–746. [CrossRef] [PubMed] [Google Scholar]
  • Tzankova V., Aluani D., Kondeva-Burdina M., Yordanov Y., Odzhakov F., Apostolov A., Yoncheva K., 2017. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed. Pharmacother., 92, 569–579. [CrossRef] [Google Scholar]
  • Xiong W., Li L., Wang Y., Yu Y., Wang S., Gao Y., Liang Y., Zhang G., Pan W., Yang X., 2016. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride. Int. J. Pharm., 511, 267–275. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.