Open Access
Issue
Ciência Téc. Vitiv.
Volume 38, Number 2, 2023
Page(s) 188 - 195
DOI https://doi.org/10.1051/ctv/ctv20233802188
Published online 18 December 2023
  • Andret-Link P., Laporte C., Valat L., Ritzenthaler C., Demangeat G., Vigne E., Laval V., Pfeiffer P., Stussi-Garaud C., Fuchs M., 2004. Grapevine fanleaf virus: still a major threat to the grapevine industry. J. Plant Pathol., 86, 183–195. [Google Scholar]
  • Ay N., Hürkan K., 2023. A novel high-resolution melting method for detection of adulteration on pistachio (Pistacia vera L.). Braz. Arch. Biol. Technol., 66, e23220550. [CrossRef] [Google Scholar]
  • Basso M.F., Fajardo T.V.M., Saldarelli P., 2017. Grapevine virus diseases: economic impact and current advances in viral prospection and management. Rev. Bras. Frutic., 39, e-411. [CrossRef] [Google Scholar]
  • Bester R., Jooste A.E.C., Maree H.J., Burger J.T., 2012. Realtime RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated virus 3 variant groups I, II, III and VI. Virol. J., 9, 219. [CrossRef] [Google Scholar]
  • Burger J.T., Maree H.J., Gouveia P., Naidu R.A., 2017. Grapevine leafroll-associated virus 3. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. 167–195. Meng B., Martelli G.P., Golino D.A., Fuchs M. (eds.), Springer, Cham. [CrossRef] [Google Scholar]
  • Cabaleiro C., Pesqueira A.M., Barrasa M., Garcia-Berrios J.J. Analysis of the losses due to grapevine leafroll disease in Albariño vineyards in Rías Baixas (Spain), 2013. Ciência Téc. Vitiv. 28, 43–50. [Google Scholar]
  • Catarino A.M., Fajardo T.V.M., Pio-Ribeiro G., Eiras M., Nickel O., 2015. Incidência de vírus em videiras no Nordeste brasileiro e caracterização molecular parcial de isolados virais locais. Cienc. Rural, 45, 379–385. [CrossRef] [Google Scholar]
  • Chatzidimopoulos M., Ganopoulos I., Moraitou-Daponta E., Lioliopoulou F., Ntantali O., Panagiotaki P., Vellios E.K., 2019. High-Resolution Melting (HRM) analysis reveals genotypic differentiation of Venturia inaequalis populations in Greece. Front. Ecol. Evol., 7, 489 [CrossRef] [Google Scholar]
  • di Rienzo V., Bubici G., Montemurro C., Cillo F., 2018. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques. PLoS One, 13, e0196738. [CrossRef] [PubMed] [Google Scholar]
  • Digiaro M., Elbeaino T., Martelli G.P., 2017. Grapevine fanleaf virus and other old world nepoviruses. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. 47–82. Meng B., Martelli G.P., Golino D.A., Fuchs M. (eds.), Springer, Cham. [CrossRef] [Google Scholar]
  • Dubiela C.R., Fajardo T.V.M., Souto E.R., Nickel O., Eiras M., Revers L.F., 2013. Simultaneous detection of Brazilian isolates of grapevine viruses by TaqMan real-time RT-PCR. Trop. Plant Pathol., 38, 158–165. [CrossRef] [Google Scholar]
  • Fajardo T.V.M., Bertocchi A.A., Nickel O., 2020. Determination of the grapevine virome by high-throughput sequencing and grapevine viruses detection in Serra Gaúcha, Brazil. Rev. Ceres, 67, 156–163. [CrossRef] [Google Scholar]
  • Fajardo T.V.M., Eiras, M., 2022. Doenças virais em videiras. In: Doenças e pragas em videiras. 61–103. Boletim Técnico 33. Bueno C.Jr. (org.), Instituto Biológico de São Paulo, São Paulo. [Google Scholar]
  • Fajardo T.V.M., Menezes-Netto A.C., Nickel O., 2021. Incidência de viroses em videiras no Vale do Rio do Peixe (Brasil) e parâmetros de amostragem para indexação viral em videiras. Rev. Bras. Vitic. Enol., 13, 22–31. [Google Scholar]
  • Fuchs M., 2020. Grapevine viruses: a multitude of diverse species with simple but overall poorly adopted management solutions in the vineyard. J. Plant Pathol., 102, 643–653. [CrossRef] [Google Scholar]
  • Kubina J., Hily J-M., Mustin P., Komar V., Garcia S., Martin I.R., Poulicard N., Velt A., Bonnet V., Mercier L., Lemaire O., Vigne E., 2022. Characterization of grapevine fanleaf virus isolates in ‘Chardonnay’ vines exhibiting severe and mild symptoms in two vineyards. Viruses, 14, 2303. [CrossRef] [PubMed] [Google Scholar]
  • Maree H.J., Almeida R.P.P., Bester R., Chooi K.M., Cohen D., Dolja V.V., Fuchs M.F., Golino D.A., Jooste A.E.C., Martelli G.P., Naidu R.A., Rowhani A., Saldarelli P., Burger J.T., 2013. Grapevine leafroll-associated virus 3. Front. Microbiol., 4, 82. [CrossRef] [Google Scholar]
  • Moura C.J.M., Fajardo T.V.M., Eiras M., Silva F.N., Nickel O., 2018. Molecular characterization of GSyV-1 and GLRaV-3 and prevalence of grapevine viruses in a grape-growing area. Sci. Agric., 75, 43–51. [CrossRef] [Google Scholar]
  • Nie X., Singh M., Chen D., Gilchrist C., Soqrat Y., Shukla M., Creelman A., Dickison V., Nie B., Lavoie J., Bisht V., 2021. Development of high-resolution DNA melting analysis for simultaneous detection of potato mop-top virus and its vector, Spongospora subterranea, in soil. Plant Dis., 105, 948–957. [CrossRef] [PubMed] [Google Scholar]
  • Oliver J.E., Vigne E., Fuchs M., 2010. Genetic structure and molecular variability of Grapevine fanleaf virus populations. Virus Res., 152, 30–40. [CrossRef] [PubMed] [Google Scholar]
  • Osman F., Leutenegger C., Golino D., Rowhani A., 2007. Real-time RT-PCR (TaqMan) assays for the detection of Grapevine leafroll associated viruses 1-5 and 9. J. Virol. Methods, 141, 22–29. [Google Scholar]
  • Osman F., Leutenegger C., Golino D., Rowhani A., 2008. Comparison of low-density arrays, RT-PCR and real-time TaqMan RT-PCR in detection of grapevine viruses. J. Virol. Methods, 149, 292–299. [CrossRef] [Google Scholar]
  • Panno S., Caruso A.G., Bertacca S., Pisciotta A., Lorenzo R.D., Marchione S., Matić S., Davino S., 2021. Genetic structure and molecular variability of grapevine fanleaf virus in Sicily. Agriculture, 11, 496. [CrossRef] [Google Scholar]
  • Radaelli P., Fajardo T.V.M., Nickel O., Eiras M., Pio-Ribeiro G., 2009. Variabilidade do gene da proteína capsidial de três espécies virais que infectam videiras no Brasil. Trop. Plant Pathol., 34, 297–305. [CrossRef] [Google Scholar]
  • Reed G.H., Kent J.O., Wittwer C.T., 2007. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics, 8, 597–608. [CrossRef] [PubMed] [Google Scholar]
  • Rott M.E., Jelkmann W., 2001. Characterization and detection of several filamentous viruses of cherry: adaptation of an alternative cloning method (DOP-PCR) and modification of an RNA extraction protocol. Eur. J. Plant Pathol., 107, 411–420. [CrossRef] [Google Scholar]
  • Rydzak P., Corona F.M.O., Whitfield A.E., Wayadande, A.C., 2020. Combining multiplex PCR and high-resolution melting for the detection and discrimination of arthropod transmitted viruses of cereals. J. Virol. Methods, 278, 113823. [CrossRef] [Google Scholar]
  • Varga A., James D., 2005. Detection and differentiation of Plum pox virus using real-time multiplex PCR with SYBR Green and melting curve analysis: a rapid method for strain typing. J. Virol. Methods, 123, 213–220. [CrossRef] [Google Scholar]
  • Vigne E., Garcia S., Komar V., Lemaire O., Hily J-M., 2018. Comparison of serological and molecular methods with highthroughput sequencing for the detection and quantification of Grapevine fanleaf virus in vineyard samples. Front. Microbiol., 9, 2726. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.