Open Access
Review
Issue
Ciência Téc. Vitiv.
Volume 37, Number 1, 2022
Page(s) 79 - 99
DOI https://doi.org/10.1051/ctv/ctv2022370179
Published online 21 June 2022
  • Alabe, 2021. Available at: https://www.alabe.pt (accessed on 17.12.2021). [Google Scholar]
  • Alecu G.C., Olteanu R.L., Radulescu C., Stirbescu R. M., Necula C., Boboaca-Mihaescu D.N., 2020. Characterization of red grapes skin extracts using vibrational spectroscopy and chemometrics. J. Sci. Arts, 51, 475–490. [Google Scholar]
  • Alexandridis A.K., Zapranis, A.D., 2013. Wavelet neural networks: A practical guide. Neural Netw., 42, 1–27. [CrossRef] [Google Scholar]
  • Anjos O., Santos A.J.A., Estevinho L.M., Caldeira I., 2016. FTIR–ATR spectroscopy applied to quality control of grape-derived spirits. Food Chem., 205, 28–35. [CrossRef] [Google Scholar]
  • Anjos O., Comesaña M.M., Caldeira I., Pedro S.I., Oller P E., Canas S., 2020. Application of functional data analysis and FTIR-ATR spectroscopy to discriminate wine spirits aging technologies. Mathematics, 8, 1–21. [Google Scholar]
  • Basalekou M., Kallithraka S., Tarantilis P.A., Kotseridis Y., 2019. Ellagitannins in wines: future prospects in methods of analysis using FT-IR spectroscopy. LWT, 101, 48–53. [CrossRef] [Google Scholar]
  • Basalekou M., Pappas C., Tarantilis P.A., Kallithraka S., 2020. Wine authenticity and traceability with the use of FT-IR. Beverages, 6, 1–13. [Google Scholar]
  • Bauer R., Nieuwoudt H., Bauer F.F., Kossmann J., Koch K. R., Esbensen K.H., 2008. FTIR spectroscopy for grape and wine analysis. Anal. Chem., 80, 1371–1379. [CrossRef] [PubMed] [Google Scholar]
  • Bell S.J., Henschke P.A., 2005. Implications of nitrogen nutrition for grapes, fermentation, and wine. Aust. J. Grape Wine Res., 11, 242–295. [CrossRef] [Google Scholar]
  • Blum M.M., John H., 2012. Historical perspective and modern applications of attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR). Drug Test. Anal., 4, 298–302. [CrossRef] [Google Scholar]
  • Boulet J.C., Williams P., Doco T., 2007. A Fourier transform infrared spectroscopy study of wine polysaccharides. Carbohyd. Polym., 69, 79–85. [CrossRef] [Google Scholar]
  • Brandão A.F.V.A., 2019. Aplicação de Metodologia FTIR para controlo de Qualidade em Vinhos e Aguardentes, Master thesis, Universidade do Porto. [Google Scholar]
  • Buratti S., Ballabio D., Giovanelli G., Zuluanga C.M., Dominguez A.M., Moles A., Benedetti S., Sinelli N., 2011. Monitoring of alcoholic fermentation using near-infrared and mid-infrared spectroscopies combined with electronic nose and electronic tongue. Anal. Chim. Acta, 697, 67–74. [CrossRef] [Google Scholar]
  • Canal C., Ozen B., 2017. Monitoring of wine process and prediction of its parameters with mid-infrared spectroscopy. J. Food Process Eng., 40, 1–10. [Google Scholar]
  • Cavaglia J., Giussani B., Mestres M., Puxeu M., Busto O., Ferré J., Boqué R., 2019. Early detection of undesirable deviations in must fermentation using a portable FTIR-ATR instrument and multivariate analysis. J. Chemometr., 33, 1–11. [CrossRef] [Google Scholar]
  • Cavaglia J., Schorn-García D., Giussani B., Ferre J., Busto O., Acena L., Mestres M., Boque R., 2020a. Monitoring wine fermentation deviations using an ATR-MIR spectrometer and MSPC charts. Chemom. Intell. Lab. Syst., 201, 1–7. [Google Scholar]
  • Cavaglia J., Schorn-García D., Giussani B., Ferréc J., Busto O., Aceña L., Mestres M., Boqué R., 2020b. ATR-MIR spectroscopy and multivariate analysis in alcoholic fermentation monitoring and lactic acid bacteria spoilage detection. Food Control, 109, 1–7. [Google Scholar]
  • Coimbra M.A., Gonçalves F., Barros A.S., Delgadillo I., 2002. Fourier transform infrared spectroscopy and chemometric analysis of white wine polysaccharide extracts. J. Agric. Food Chem., 50, 3405–3411. [CrossRef] [PubMed] [Google Scholar]
  • Condurso C., Cincotta F., Tripodi G., Verzera A., 2018. Characterization and aging monitoring of marsala dessert wines by a rapid FTIR-ATR method coupled with multivariate analysis. Eur. Food Res. Technol., 244, 1073–1081. [CrossRef] [Google Scholar]
  • Costa N.L., García Llobodanin L.A., Castro I.A., Barbosa R., 2019. Using Support Vector Machines and neural networks to classify Merlot wines from South America. Inf. Process. Agric, 6, 265–278. [Google Scholar]
  • Dambergs R., Gishen M., Cozzolino D., 2015. A review of the state of the art, limitations, and perspectives of infrared spectroscopy for the analysis of wine grapes, must, and grapevine tissue. Appl. Spectrosc. Rev., 50, 261–278. [CrossRef] [Google Scholar]
  • Dewey F. M., Hill M., DeScenzo R., 2008. Quantification of Botrytis and laccase in wine grapes. Am. J. Enol. Vitic., 59, 47–54. [Google Scholar]
  • Di Egidio V., Sinelli N., Giovanelli G., Moles A., Casiraghi E., 2010. NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. Eur. Food Res. Technol., 230, 947–955. [CrossRef] [Google Scholar]
  • Dong D., Zheng W., Wang W., Zhao X., Jiao L., Zhao C., 2014. Analysis and discrimination of grape spoilage via volatiles: a comparison between long optical path Fourier-transform-infrared spectroscopy and sensor arrays. Analyst, 139, 5028–5034. [CrossRef] [PubMed] [Google Scholar]
  • Felix instruments, 2021. Available at https://felixinstruments.com/ (accessed on 17.12.2021) [Google Scholar]
  • Fernández K., Agosin E., 2007. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry. J. Agric. Food Chem., 55, 7294–7300. [CrossRef] [PubMed] [Google Scholar]
  • Ferreira M.L., Costa A.M., Ribeiro N., Simões T., 2009. Quality control in FTIR wine analysis, acceptance of analytical Results. Ciência Téc. Vitivinic., 24, 47–53. [Google Scholar]
  • Ferreira M.L., 2015. Automatização da análise de vinhos-FTIR. In: Química enológica-métodos analíticos. Curvelo-García A. S., Barros P., (ed.). Publindustria, Edições Técnicas, LDA., Porto. [Google Scholar]
  • Ferrari E., Foca G., Vignali M., Tassi L., Ulrici A., 2011. Adulteration of the anthocyanin content of red wines: perspectives for authentication by Fourier transform-near infrared and 1H NMR spectroscopies. Anal. Chim. Acta, 701, 139–151. [CrossRef] [Google Scholar]
  • Fragoso S., Acena L., Guasch J., Mestres M., Busto O., 2011. Quantification of phenolic compounds during red winemaking using FT-MIR spectroscopy and PLS-regression., J. Agric. Food Chem., 59, 10795–10802. [CrossRef] [PubMed] [Google Scholar]
  • Fu Y., Lim L.T., Mcnicholas P.D., 2009. Changes on enological parameters of white wine packaged in bag-in-box during secondary shelf life. J. Food Sci., 74, 608–618. [Google Scholar]
  • Garcia-Hernandez C., Salvo-Comino C., Martin-Pedrosa F., Garcia-Cabezon C., Rodriguez-Mendez M.L., 2020. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. LWT, 118, 1–8. [Google Scholar]
  • Geană E.I., Ciucure C.T., Apetrei C., Artem V., 2019. Application of spectroscopic UV-Vis and FT-IR screening techniques coupled with multivariate statistical analysis for red wine authentication: varietal and vintage year discrimination. Molecules, 24. [Google Scholar]
  • Gerhards D., Büchl N., Wenning M., Scherer S., Von Wallbrunn C., 2015. Terroir of yeasts? application of FTIR spectroscopy and molecular methods for strain typing of yeasts. BIO Web Conf., 5, 02001. [CrossRef] [EDP Sciences] [Google Scholar]
  • Grangeteau C., Gerhards D., Terrat S., Dequiedt S., Alexandre H., Guilloux-Benatier M., Von Wallbrunn C., Rousseaux S., 2016. FT-IR spectroscopy: a powerful tool for studying the inter-and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must. J. Microbiol. Methods, 121, 50–58. [CrossRef] [Google Scholar]
  • Griffiths P.R., de Haseth J.A., 2007. Fourier Transform Infrared Spectrometry, John Wiley & Sons, Inc. [CrossRef] [Google Scholar]
  • Grijalva-Verdugo C., Hernández-Martínez M., Meza-Márquez O.G., Gallardo-Velázquez T., Osorio-Revilla G., 2018. FT-MIR spectroscopy and multivariate analysis for determination of bioactive compounds and antioxidant capacity in Cabernet Sauvignon wines. CYTA - J. Food, 16, 561–569. [CrossRef] [Google Scholar]
  • Guillen-Casla V., Rosales-Conrado N., Perez-Arribas L.V., Polo-Díez L.M., 2011. Principal component analysis (PCA) and multiple linear regression (MLR) statistical tools to evaluate the effect of E-beam irradiation on ready-to-eat food. J. Food Comp.. Anal., 24, 456–464. [CrossRef] [Google Scholar]
  • He Z., Duan X., Ma Z., 2013. Measuring routine parameters of wine by ATR-MIR spectroscopy. Appl. Mech. Mater., 397, 1749–1752. [CrossRef] [Google Scholar]
  • Hill G. N., Evans K. J., Beresford R. M., Dambergs R. G., 2013. Near and mid-infrared spectroscopy for the quantification of botrytis bunch rot in white wine grapes. J. Near Infrared Spectrosc., 21, 467–475. [CrossRef] [Google Scholar]
  • Holzapfel B. P., Smith J. P., Field S. K., Hardie W.J., 2010. Dynamics of carbohydrate reserves in cultivated grapevines, Hort. Rev., 36, 143–211. [Google Scholar]
  • Ioannou-Papayianni E., Kokkinofta R. I., Theocharis C. R., 2011. Authenticity of Cypriot sweet wine commandaria using FT-IR and chemometrics. J. Food Sci., 76, 420–427. [Google Scholar]
  • Izquierdo-Llopart A., Saurina J., 2021. Multi-sensor characterization of sparkling wines based on data fusion. Chemosensors, 9, 1–18. [Google Scholar]
  • Jamwal R., Amit, Kumari S., Sharma S., Kelly S., Cannavan A., Singh D. K., 2021. Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration. Vib. Spectrosc., 113, 103222. [CrossRef] [Google Scholar]
  • Jensen J. S., Egebo M., Meyr A.S., 2008. Identification of spectral regions for the quantification of red wine tannins with Fourier transform mid-infrared spectroscopy. J. Agric. Food Chem., 56, 3493–3499. [CrossRef] [PubMed] [Google Scholar]
  • Jug T., Boni S., Kosmerl T., 2017. FTIR analysis of ash in wine. BIO Web Conf., 9, 02023. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kumar K., Giehl A., Schweiggert R., Patz C.D., 2021. Network analysis on Fourier-transform infrared (FTIR) spectroscopic data sets in an Eigenspace layout: Introducing a novel approach for analyzing wine samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 251, 1–9. [Google Scholar]
  • Kyraleou M., Pappas C., Voskidi E., Kotseridis Y., Basalekou M., Tarantilis P.A., Kallithraka S., 2015. Diffuse reflectance Fourier transform infrared spectroscopy for simultaneous quantification of total phenolics and condensed tannins contained in grape seeds. Ind. Crops Prod., 74, 784–791. [CrossRef] [Google Scholar]
  • Laghi L., Parpinello G.P., Del Rio D., Calani L., Mattioli A. U., Versari A., 2010. Fingerprint of enological tannins by multiple techniques approach. Food Chem., 121, 783–788. [CrossRef] [Google Scholar]
  • Lemos A.M., Machado N., Egea-Cortines M., Barros A.I., 2020. ATR-MIR spectroscopy as a tool to assist ‘Tempranillo’ clonal selection process: geographical origin and year of harvest discrimination and oenological parameters prediction. Food Chem., 325, 1–8. [Google Scholar]
  • Lucarini M., Durazzo A., Kiefer J., Santini A., Lombardi-Boccia G., Souto E.B., Romani A., Lampe A., Ferrari Nicoli S., Gabrielli P., Bevilacqua N., Campo M., Morassut M., Cecchini F., 2020. Grape Seeds: chromatographic profile of fatty acids and phenolic compounds and qualitative analysis by FTIR-ATR spectroscopy. Foods, 9, 1–14, 10. [Google Scholar]
  • Manley M., Van Zyl A., Wolf E.H., 2001. The evaluation of the applicability of Fourier transforms near-infrared (FT-NIR) spectroscopy in the measurement of analytical parameters in must and wine. S. Afr. J. Enol. Vitic., 22, 93–100. [Google Scholar]
  • Martelo-Vidal M.J., Domínguez-Agis F., Vázquez M., 2013. Ultraviolet/visible/near-infrared spectral analysis and chemometric tools for the discrimination of wines between subzones inside a controlled designation of origin: a case study of Rías Baixas. Aust. J. Grape Wine Res., 19, 62–67. [CrossRef] [Google Scholar]
  • Mendes E., Duarte N., 2021. Mid-infrared spectroscopy as a valuable tool to tackle food analysis: a literature review on coffee, dairies, honey, olive oil, and wine. Foods, 10, 1–32, 477 [Google Scholar]
  • Michel J., Jourdes M., Silva M.A., Giordanengo T., Mourey, N., Teissedre P-L, 2011. Impact of concentration of ellagitannins in oak wood on their levels and organoleptic influence in red wine. J. Agric. Food Chem., 59, 5677–5683. [CrossRef] [PubMed] [Google Scholar]
  • Miramont C., Jourdes M., Teissedre P.L., 2020. Development of UV-vis and FTIR partial least squares models: comparison and combination of two spectroscopy techniques with chemometrics for polyphenols quantification in red wine. OENO One, 4, 779–792. [CrossRef] [Google Scholar]
  • Moore J.P., Zhang S.L., Nieuwoudt H., Divol B., Trygg J., Bauer F.F., 2015. J. Agric. Food Chem., 63, 10054–10063. [CrossRef] [PubMed] [Google Scholar]
  • Moldes O.A., Mejuto J.C., Rial-Otero R., Simal-Gándara J. 2017. A critical review on the applications of artificial neural networks in winemaking technology. Crit. Rev. Food Sci Nutr., 57, 2896–2908. [CrossRef] [PubMed] [Google Scholar]
  • Moreira J.L., Marcos A.M., Barros P., 2002. Analysis of Portuguese wine by Fourier transform infrared spectrometry. Ciência. Tec. Vitiv., 17, 27–33. [Google Scholar]
  • Moreira J.L., Santos L., 2005. Analysis of organic acids in wines by Fourier-transform infrared spectroscopy. Anal. Bioanal. Chem., 382, 421–425. [CrossRef] [PubMed] [Google Scholar]
  • Murru C., Chimeno-Trinchet C., Díaz-García M.E., Badía-Laíño R., Fernández-González A., 2019. Artificial neural network and attenuated total reflectance-fourier transform infrared spectroscopy to identify the chemical variables related to ripeness and variety classification of grapes for protected designation of origin wine production. Comput. Electron. Agric., 164, 1–6. [Google Scholar]
  • Musingarabwi D.M., Nieuwoudt H.H., Young P.R., Eyéghè-Bickong H. A., Vivier M. A. D. M., 2016. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Food Chem., 190, 253–262. [CrossRef] [PubMed] [Google Scholar]
  • Nieuwoudt H.H., Pretorius I.S., Bauer F.F., Nel D.G., Prior B.A.H.H., 2006. Rapid screening of the fermentation profiles of wine yeasts by Fourier transforms infrared spectroscopy. J. Microbiol. Methods, 67, 248–256. [CrossRef] [Google Scholar]
  • Nogales-Bueno J., Baca-Bocanegra B., Rooney A., Hernández-Hierro J.M., José Heredia F., Byrne H.J., 2017. Linking ATR-FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta, 167, 44–50. [CrossRef] [PubMed] [Google Scholar]
  • OIV, resolution OIV/VITI 333/2010. Definition of vitivinicultural ‘terroir’. International organization of vine and wine, Paris, France. [Google Scholar]
  • OIV, resolution OIV/OENO 390/2010. Guidelines on infrared analyzers in oenology. International organization of vine and wine, Paris, France. [Google Scholar]
  • Olale K., Walyambillah W., Mohammed S.A., Sila A., Shepherd K., 2017. Application of DRIFT-FTIR spectroscopy for quantitative prediction of simple sugars in two local and two 34 Floridian mango (Mangifera indica L.) cultivars in Kenya. J. Anal. Sci. Technol., 8, 1–13. [CrossRef] [Google Scholar]
  • Ortega-Regules A., Ros-García J.M., Bautista-Ortín A.B., López-Roca J.M., Gómez-Plaza E., 2008. Changes in skin cell wall composition during the maturation of four premium wine grape varieties, J. Sci. Food Agric., 88, 420–428. [CrossRef] [Google Scholar]
  • Ozturk B., Yucesoy D., Ozen B., 2012. Application of mid-infrared spectroscopy for the measurement of several quality parameters of alcoholic beverages, wine, and raki. Food Anal. Methods, 5, 1435–1442. [CrossRef] [Google Scholar]
  • Pappas C., Kyraleou M., Voskidi E., Kotseridis Y., Taranilis P.A., Kallithraka S., 2015. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance Fourier transform-infrared Spectroscopy. J. Food Sci., 80, 298–306. [Google Scholar]
  • Passos C., Cardoso S.M., Barros A.S., Silva C.M., Coimbra M.A., 2010. Application of Fourier transform infrared spectroscopy and orthogonal projections to latent structures/partial least squares regression for estimation of procyanidins average degree of polymerization. Anal. Chim. Acta, 661, 143–149. [CrossRef] [Google Scholar]
  • Petrovic G., Aleixandre-Tudo J.L., Buica A., 2020. Viability of IR spectroscopy for the accurate measurement of yeast assimilable nitrogen content of grape juice. Talanta, 206, 1–7. [Google Scholar]
  • Picque D., Lieben P., Chretien P., Beguin J., Guerin L., 2010. Assessment of maturity of Loire valley wine grapes by mid-infrared spectroscopy. J. Int. Sci. Vigne Vin, 44, 219–229. [Google Scholar]
  • Power A., Truong V. K., Chapman J., Cozzolino D., 2019. From the laboratory to the vineyard-evolution of the measurement of grape composition using NIR spectroscopy towards high-throughput analysis. High-Throughput, 8, 1–9. [Google Scholar]
  • Preserova J., Ranc V., Milde D., Kubistov V., Stavek J., 2015. Study of phenolic profile and antioxidant activity in selected Moravian wines during winemaking process by FT-IR spectroscopy. J. Food Sci. Tech.., 52, 6405–6414. [CrossRef] [PubMed] [Google Scholar]
  • Puxeu M., Andorra I., De Lamo-Castellví S., 2015. Monitoring Saccharomyces cerevisiae grape must fermentation process by attenuated total reflectance spectroscopy. Food Bioproc. Tech., 8, 637–646. [CrossRef] [Google Scholar]
  • Rasines-Perea Z., Prieto Perea N., Romera Fernández M., Berruet L.A., Gallo B., 2015. Fast determination of anthocyanins in red grape musts by Fourier transform mid-infrared spectroscopy and partial least squares regression. Eur. Food Res. Technol., 240, 897–908. [CrossRef] [Google Scholar]
  • Regmi U., Palma M., Barroso C.G., 2012. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques. Anal. Chim. Acta, 732, 137–144. [CrossRef] [Google Scholar]
  • Ribereau-Gayon P., Dubourdieu D., Donèche B., Lonvaud A., 2021. Handbook of Enology: Volume 1: The Microbiology of Wine and Vinifications (3rd edition). John Wiley &Sons, Ltd., Chichester. [Google Scholar]
  • Rinnan A., Nørgaard L., Van den Berg, F., Thygesen J., Bro R., Engelsen S.B., 2009. Data Pre-processing. In: Infrared Spectroscopy for Food Quality Analysis and Control, Sun D.W. (ed.) Elsevier Inc. [Google Scholar]
  • Robinson J.B., 1992. Grapevine nutrition. In: Viticulture, Vol. 2, Practices. 178–208. Coombe, B.G. and Dry, P.R., (eds.), Winetitles: Adelaide, SA, Adelaide. [Google Scholar]
  • Romera-Fernández M., Berrueta L. A., Garmón-Lobato S., Gallo B., Vicente F., Moreda J.M., 2012. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine. Talanta, 88, 303–310. [CrossRef] [PubMed] [Google Scholar]
  • Roussel S., Bellon-Maurel V., Roger J.M., Grenier P., 2003. Authenticating white grape must variety with classification models based on aroma sensors, FT-IR, and UV spectrometry. J. Food Eng., 60, 407–419. [CrossRef] [Google Scholar]
  • Scano P., 2021. Characterization of the medium infrared spectra of polyphenols of red and white wines by integrating FT IR and UV–Vis spectral data. LWT, 147, 1–6,111604. [CrossRef] [Google Scholar]
  • Schmidtke L.M., Smith J.P., Müller M.C., Holzapfel B.P., 2012. Rapid monitoring of grapevine reserves using ATR–FT-IR and chemometrics. Anal. Chim. Acta, 732, 16–25. [CrossRef] [Google Scholar]
  • Schmidtke L.M., Schwarz L.J., Scheuermann C., Steel C. C., 2019. Discrimination of Aspergillus spp., Botrytis cinerea, and Penicillium expansum in grape berries by ATR-FTIR spectroscopy. Am. J. Enol. Vitic., 70, 68–76. [CrossRef] [Google Scholar]
  • Silva S. D., Feliciano R. P., Boas L.V., Bronze M.R., 2014. Application of FTIR-ATR to muscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem., 150, 489–493. [CrossRef] [Google Scholar]
  • Skoutelas D., Ricardo-Da-Silva J.M., Laureano O., 2011. Validation and comparison of formol and FT-IR methods for assimilable nitrogen in vine grapes. S Afr. J. Enol. Vitic., 32, 262–266. [Google Scholar]
  • Smith J. P., Schmidtke L.M., Muller M.C., Holzapfel B.P., 2014. Measurement of the concentration of nutrients in grapevine petioles by attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics. Aust. J. Grape Wine R., 20, 99–309. [Google Scholar]
  • Stuart B., 2004. Experimental Methods. In: Infrared Spectroscopy: Fundamentals and Applications B., 15–44. John Wiley & Sons. [Google Scholar]
  • Sun B.S., Pinto T., Leandro M.C., Ricardo-da-Silva J.M. and Spranger M.I., 1999. Transfer of catechins and proanthocyanidins from solid parts of the grape cluster into wine. American Journal of Enology and Viticulture. Am. J. Enol. Vitic., 50, 179–184. [Google Scholar]
  • Swanepoel M., du Toit M., Nieuwoudt H.H., 2007. Optimization of the quantification of total soluble solids, pH, and titratable acidity in south African grape must using Fourier transform mid-infrared Spectroscopy. S Afr.J. Enol. Vitic., 28, 140–149. [Google Scholar]
  • Tarantilis P.A., Troianou V.E., Pappas C.S., Kotseridis Y. S., Polissiou M.G., 2008. Differentiation of Greek red wines on the basis of grape variety using attenuated total reflectance Fourier transform infrared spectroscopy. Food Chem., 111, 192–196. [CrossRef] [Google Scholar]
  • Teixeira-dos Santos C.A., Páscoa R.N.M.J., Porto P.A.L. S., Cerdeira A.L., Lopes J.A., 2016. Application of Fourier-transform infrared spectroscopy for the determination of chloride and sulfate in wines. LWT, 67, 181–186. [CrossRef] [Google Scholar]
  • Titus D., Samuel J.J., Roopan S.M., 2019. Nanoparticle characterization techniques. In: Green synthesis, characterization, and applications of nanoparticles. 313–314. Elsevier Inc. [Google Scholar]
  • Topala C.M., Tataru L.D., 2018. Rapid method for the discrimination of Romanian wines based on mid-infrared spectroscopy and chemometrics. Rev. Chim., 69, 469–473. [CrossRef] [Google Scholar]
  • Topala C.M., Tataru L.D., 2019. ATR-FTIR spectroscopy coupled with chemical and chemometric analysis to distinguish between some sweet wines. Rev. Chim., 70, 2355–2361. [CrossRef] [Google Scholar]
  • Urtubia A., Pérez-Correa J.R., Meurens, M., Agosin E., 2004. Monitoring large scale wine fermentations with infrared spectroscopy. Talanta, 64, 778–784. [CrossRef] [PubMed] [Google Scholar]
  • Versari A., Parpinello G.P., Scazzina F., Del Rio D., 2010. Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy. Food Control, 21, 786–789. [CrossRef] [Google Scholar]
  • Véstia J., Barroso J.M., Ferreira H., Gaspar L., Rato A.E., 2019. Predicting calcium in grape must and base wine by FT-NIR spectroscopy. Food Chem., 276, 71–76. [CrossRef] [Google Scholar]
  • Vidal S., Francis L., Guyot S., Marnet N., Kwiatkowski M., Gawel R., 2003. The mouth‐feel properties of grape and apple proanthocyanidins in a wine‐like medium. J. Sci. Food Agric., 83, 564–573. [CrossRef] [Google Scholar]
  • Wang S., Hu X.Z., Liu Y.Y., Tao N.P., Lu Y., Wang X. C., Lam W., Lin L., Xu C.H., 2022. Direct authentication and composition quantitation of red wines based on Tri-step infrared spectroscopy and multivariate data fusion. Food Chem., 372, 1–8. [Google Scholar]
  • Waterhouse A.L., Sacks G.L., Jeffery D.W., 2016. Understanding Wine Chemistry, John Willey and Sons, Inc. [Google Scholar]
  • Watson B., 2003. Evaluation of wine grape maturity. In: Oregon Viticulture. 235–245. Hellman, E., (ed.), 1233 Oregon State University Press, Corvallis. [Google Scholar]
  • Wynne L., Clark S., Adams M.J., Barnett N.W., 2007. Compositional dynamics of a commercial wine fermentation using two-dimensional FTIR correlation analysis. Vib. Spectrosc., 44, 394–400. [CrossRef] [Google Scholar]
  • Zhao Z., Liu H., 2007. Spectral feature selection for supervised and unsupervised. ICML ’07, 1151–1157. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.